logo
Тут ответ

1. Первообразная и неопределенный интеграл

Основной задачей дифференциального исчисления является нахождение производной f '(x) или дифференциала f '(x)dx данной функции f(x)

В интегральном исчислении решается обратная задача:

Дана функция f(x); требуется найти такую функцию F(x), производная которой равна f(x) или дифференциал которой равен f(x)dx в области определения функции f(x), т.е. в этой области функции f(x) и F(x) связаны соотношением

F'(x)=f(x)

или

dF(x)= F'(x)dx= f(x)dx

Определение 1: Функция F(x) называется первообразной функцией для данной функции f(x), если для любого x из области определения f(x) выполняется равенство F'(x)= f(x) или dF(x)= f(x)dx

Из дифференциального исчисления известно что если две функции f(x) и j(x) отличаются друг от друга на постоянную величину, то производные или дифференциалы этих функций равны, т.е. если

f(x) = j(x) + C

то

f '(x) = j'(x)

или

f '(x)dx = j'(x)dx

Известно также, что, и наоборот, если две функции f(x) и j(x) имеют одну и ту же производную или один и тот-же дифференциал, то они отличаются друг от друга на постоянную величину, т.е. если

f '(x) = j'(x) или df(x) = dj(x),

то

f(x) = j(x) + С

Отсюда непосредственно следует, что если в формуле y = F(x) + C мы будем придавать постоянной C все возможные значения, то получим все возможные первообразные функции для функции f (x)

Определение 2: Множество F(x) + C всех первообразных функций для данной функции f (x) , где C принимает все возможные числовые значения, называется неопределенным интегралом от функции f (x) и обозначается символом

Таким образом, по определению,

где F'(x) = f (x) или dF(x) = f(x)dx и С - произвольная постоянная. В последней формуле f(x) называется подинтегральной функцией, f(x)dx - подинтегральным выражением, а символ - знаком неопределенного интеграла.

Неопределенным интегралом называют не только множество всех первообразных, но и любую функцию этого множества.

Таким образом, неопределенный интеграл представляет собой любую функцию, дифференциал которой равен подинтегральному выражению, а производная равна подинтегральной функции

Нахождение первообразной по данной функции f(x) называется интегрированием и является действием, обратным дифференцированию.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4