logo
Тут ответ

10.1Критические точки функции. Необходимое условие экстремума.

Мы рассмотрели поведение функции на промежутках, где f(х)>0 и f'(х)<0. Внутренние точки области определения функции, в которых ее производная равна нулю или не существует, называются критическими точками этой функции. Эти точки играют важную роль при построении графика функции, поскольку только они могут быть точками экстремума функции (рис. 1 и 2). Сформулируем соответствующее утверждение, его называют теоремой Ферма (в честь французского математика Пьера Ферма).

Необходимое условие экстремума. Если точка хо является точкой экстремума функции f и в этой точке существует производная f’, то она равна нулю:F’(x0) =0.

Рассмотрим случай f'(x0)>0. По определению производной отношение при х→х0 стремится к положительному числу f' (х0), а следовательно, и само будет положительно при всех х, достаточно близких к x0. Для таких х

и, значит, f(x)>f(x0) для всех х>х0 из некоторой окрестности точки x0. Поэтому х0 не является точкой максимума.

Если же х<х0, то f (x)<f(x0), и, следовательно, х0 не может быть и точкой минимума f.

Случай F'(x0)<0 разбирается аналогично.

Важно отметить, что теорема Ферма есть лишь необходимое условие экстремума: из того, что производная в точке хо обращается в нуль, необязательно следует, что в этой точке функция имеет экстремум. Например, производная функции f(х)=х3 обращается в нуль в точке 0, но экстремума в этой точке функция не имеет (рис. 3).

До сих пор мы рассматривали критические точки, в которых производная равна нулю. Рассмотрим теперь критические точки, в которых производная не существует. (Отметим, что, например, точка 0 для функции не является критической: в ней производная не существует, но она не внутренняя точка области определения.) В этих точках функция также может иметь или не иметь экстремум.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4