2. Свойства сходящихся рядов.
1. Члены сходящегося ряда можно умножить на одно и то же число k. Полученный ряд будет сходиться, а сумма его будет в k раз больше суммы исходного ряда.
Доказательство. Для второго ряда частичная сумма будет равна . По теореме о предельном переходе в равенстве 2. Члены сходящегося ряда можно группировать. Полученный ряд будет сходиться, и сумма его не изменится.
Сгруппируем члены ряда, например, так. Видно, что частичные суммы группированного ряда представляют собой подпоследовательность последовательности частичных сумм исходного ряда. Так как последовательность сходится, то и подпоследовательность сходится к тому же пределу.
3.В сходящемся ряде можно отбросить конечное число первых членов . Полученный ряд будет сходиться, а его сумма будет меньше суммы исходного ряда на B.
Запишем частичные суммы второго ряда . По теореме о предельном переходе в равенстве .
Замечание. Ряд, полученный из исходного ряда отбрасыванием первых k членов, называется остатком ряда и обозначается
4. Для того чтобы ряд сходился необходимо и достаточно, чтобы сходился остаток ряда. (Докажите это самостоятельно, используя доказательство свойства 3).
Поэтому сходимость ряда можно исследовать, «начиная с некоторого n».
5. Сходящиеся ряды можно складывать (или вычитать), получая сходящийся ряд с суммой, равной сумме (или разности) сумм исходных рядов.
Рассмотрим два сходящихся ряда и . Рассмотрим ряд , где . . Переходя к пределу в равенстве, получим.
Примеры.
1. Ряд —58+100+1+0,5+0,25+0,125+… сходится. В самом деле, отбросив первых четыре члена ряда (свойства 3,4), получим сходящуюся бесконечно убывающую геометрическую прогрессию
2. Ряд расходится. Он представляет собой сумму двух рядов: сходящейся геометрической прогрессии (нечетные члены) и гармонического ряда (четные члены). Если бы этот ряд сходился, то, вычитая из него почленно сходящийся ряд , мы должны были бы по свойству 5 получить сходящийся ряд. А получаем расходящийся гармонический ряд. Следовательно, исходный ряд расходится.
3. Ряд сходится. Рассмотрим сходящийся ряд . Группируем его члены , получаем исходный ряд. Следовательно, он сходится (свойство 2), и его сумма равна 1.
3. –
4. Критерий сходимости положительных рядов (критерий Коши) — основной признак сходимости числовых рядов, установленный Огюстеном Коши.
Положительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху.
Доказательство
Необходимое условие
Так как ряд сходится, то последовательность частичных сумм имеет предел. Следовательно она ограничена. А значит она ограничена и снизу и сверху. Доказано
Достаточное условие
Дан положительный ряд и последовательность частичных сумм ограничена сверху. Покажем, что наша последовательность(из членов ряда) неубывающая: Теперь используем свойство из теоремы о монотонной последовательности и получим, что последовательность частичных сумм сходится (она монотонно не убывает и ограничена сверху), следовательно ряд сходится (по определению).
Уравнение:
Для сходимости ряда необходимо и достаточно, чтобы все отрезки этого ряда с достаточно большими номерами были сколь угодно малы. Другими словами, ряд сходится тогда и только тогда, когда
5. –
6. Первый признак сравнения. Пусть даны два ряда с положительными членами
(17)
и
(18)
и каждый член ряда (17) не превосходит соответствующего члена ряда (18), т.е. выполняется (n = 1, 2, 3, …). Тогда, если сходится ряд (18), то сходится и ряд (17). Если ряд (17) расходится, то ряд (18) также расходится. Этот признак остается в силе, если условие выполняется не для всех n, а лишь начиная с некоторого номера n = N.
7. Второй признак сравнения. Если существует конечный отличный от нуля предел
,
то оба ряда с положительными членами
и
одновременно сходятся или одновременно расходятся.
При использовании этих признаков исследуемый ряд часто сравнивается или с бесконечной геометрической прогрессией
, q > 0, (19)
которая при q < 1 сходится и имеет сумму S = a / (1-q), а при q 1 расходится, или с расходящимся гармоническим рядом
. (20)
8. Признак Даламбера. Если для ряда
(11)
существует предел
, (12)
то ряд (11) сходится, если D<1 и расходится, если D>1.
9. Признак Коши. Если для ряда
(13)
существует предел
, (14)
то ряд (13) сходится, если c<1, и расходится, если c>1.
10. Интегральный признак Маклорена – Коши. Этот признак построен на идее сравнения ряда с несобственным интегралом. Представим ряд с положительными членами в виде
, (15)
где f (n) = un - значение некоторой функции f(x) при x = n, определенной в области x 1.
Если f(x) при x 1 непрерывная, положительная и монотонно убывающая функция, то ряд (15) сходится или расходится в зависимости от того, сходится или расходится интеграл
,
т.е. существует конечный предел
. (16)
11. Теорема Лейбница (признак Лейбница) — теорема об условной сходимости знакочередующихся рядов, сформулированная немецким математиком Лейбницем.
Формулировка
Теорема формулируется следующим образом. Знакочередующийся ряд
сходится, если выполняются оба условия:
Yandex.RTB R-A-252273-3
- (Функция нескольких переменных)
- 1. Понятие функции двух и более переменных
- 1.1 Предел и непрерывность функции двух переменных
- 2. Примеры дифференциальных уравнений в частных производных 1-го порядка
- 3.Полный дифференциал
- 4. Производная сложной функции.
- 5.1Полный дифференциал
- 6. Касательная плоскость к поверхности
- 6.1Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- 7.Производная по направлению и градиент функции нескольких переменных
- 8. Частные производные и дифференциалы высших порядков
- 9. Неявные функции
- 9.1Дифференцирование неявной функции
- 10. Экстремум функции
- 10.1Критические точки функции. Необходимое условие экстремума.
- 11. Достаточное условие экстремума
- 12. Наибольшее и наименьшее значения функции двух переменных в замкнутой области
- 13. Достаточные условия экстремума функции двух переменных
- 14. Лагранжа метод множителей
- (Интегральное исчисление)
- 1. Первообразная и неопределенный интеграл
- 1.1Таблица простейших интегралов
- 3. Метод подведения под знак дифференциала
- 4. Метод замены переменной
- 5. Интегрирование по частям
- 6. Теорема Безу
- 7. Теорема о разложении многочлена на линейные множители
- 8. Разложение дроби на простейшие.
- 9. Интегрирование рациональных дробей
- 10. Остроградского метод
- 11. Интегрирование тригонометрических функций
- 12 Интегрирование иррациональных выражений
- 14. Интегрирование дифференциального бинома
- 15 Интегрирование иррациональных функций
- 17. Формула Ньютона-Лейбница
- 18. Замена переменной в определенном интеграле
- 19. Несобственные интегралы.
- 20. Приближённое вычисление определённых интегралов
- 22. Длина дуги кривой.
- 23. Вычисление объема тела по площадям его параллельных сечений
- 24. Объем тела вращения.
- 25. Геометрическое и механическое приложения определенного интеграла
- (Числовые ряды)
- 2. Свойства сходящихся рядов.
- 12. Оценка знакочередующегося ряда.
- 13. Знакопеременные ряды
- 14. Абсолютная и условная сходимость
- 15. Знакопеременные ряды
- 19. Дифференцирование и интегрирование степенных рядов
- 20. Признак Вейерштрасса Рассмотрим ряд
- 21. Степенным рядом называется ряд вида
- 22. Интервал и радиус сходимости степенного ряда
- 24. Ряды Тейлора и Маклорена