23. Вычисление объема тела по площадям его параллельных сечений
Рассмотрим тело D, ограниченное плоскостями х = а и х = b (рис. 247).
Через S(x) обозначим площадь сечения тела D плоскостью, проходящей через точку с абсциссой х [а; b] и перпендикулярной оси Ох. Будем предполагать, что
1) функция S(x) непрерывна на [а; b];
2) для любых x1 и x2 из [а; b] сечения тела D плоскостями х = x1 и х = x1 таковы, что одно из них проектируется в другое.
Тело D, обладающее этими свойствами, будем называть телом с допустимыми параллельными сечениями.
Теорема. Объем тела с допустимыми параллельными сечениями вычисляется по формуле
Отрезок [а; b] точками
разобьем на п отрезков [хi—1 ; хi] длины
Пусть тi и Mi — наименьшее и наибольшее значения функции S(x) на отрезке
[хi—1 ; хi] .
Плоскостями х = хi, где i = 1, 2, ..., п — 1, тело D разобьем на n слоев. Выделим i-й слой, соответствующий отрезку [хi—1 ; хi], и построим два цилиндра высрты Δ хi :
один с основанием площади Mi , содержащий i-й слой, а другой с основанием площади тi , содержащийся в i-м слое (рис. 248).
Объемы этих цилиндров равны Mi Δ хi и тi Δ хi.
Произведя указанные построения для каждого слоя, получим два ступенчатых тела D'n и D"n таких, что D'n < D < D''n.
Их объемы равны
Так как функция S(x) непрерывна, то V'n и V"n при п —> ∞ имеют один и тот же предел, равный .
Следовательно, объем тела D вычисляется по формуле (1).
Замечание. Можно доказать, что формула (1) остается справедливой и в том случае, когда условие 2) для тела D не выполняется.
Задача. Определить объем тела, отсекаемого от прямого кругового цилиндра плоскостью, проходящей через диаметр основания и составляющей с плоскостью основания угол α (α < 90°). Радиус основания цилиндра равен R.
Введем систему координат так, как показано на рис. 249, и рассмотрим сечения данного тела плоскостями, перпендикулярными оси Оx.
Вычислим площадь сечения плоскостью, проходящей через точку А с абсциссой х,
|х| < R. Это сечение представляет собой прямоугольный треугольник ABC, и поэтому
Yandex.RTB R-A-252273-3
- (Функция нескольких переменных)
- 1. Понятие функции двух и более переменных
- 1.1 Предел и непрерывность функции двух переменных
- 2. Примеры дифференциальных уравнений в частных производных 1-го порядка
- 3.Полный дифференциал
- 4. Производная сложной функции.
- 5.1Полный дифференциал
- 6. Касательная плоскость к поверхности
- 6.1Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- 7.Производная по направлению и градиент функции нескольких переменных
- 8. Частные производные и дифференциалы высших порядков
- 9. Неявные функции
- 9.1Дифференцирование неявной функции
- 10. Экстремум функции
- 10.1Критические точки функции. Необходимое условие экстремума.
- 11. Достаточное условие экстремума
- 12. Наибольшее и наименьшее значения функции двух переменных в замкнутой области
- 13. Достаточные условия экстремума функции двух переменных
- 14. Лагранжа метод множителей
- (Интегральное исчисление)
- 1. Первообразная и неопределенный интеграл
- 1.1Таблица простейших интегралов
- 3. Метод подведения под знак дифференциала
- 4. Метод замены переменной
- 5. Интегрирование по частям
- 6. Теорема Безу
- 7. Теорема о разложении многочлена на линейные множители
- 8. Разложение дроби на простейшие.
- 9. Интегрирование рациональных дробей
- 10. Остроградского метод
- 11. Интегрирование тригонометрических функций
- 12 Интегрирование иррациональных выражений
- 14. Интегрирование дифференциального бинома
- 15 Интегрирование иррациональных функций
- 17. Формула Ньютона-Лейбница
- 18. Замена переменной в определенном интеграле
- 19. Несобственные интегралы.
- 20. Приближённое вычисление определённых интегралов
- 22. Длина дуги кривой.
- 23. Вычисление объема тела по площадям его параллельных сечений
- 24. Объем тела вращения.
- 25. Геометрическое и механическое приложения определенного интеграла
- (Числовые ряды)
- 2. Свойства сходящихся рядов.
- 12. Оценка знакочередующегося ряда.
- 13. Знакопеременные ряды
- 14. Абсолютная и условная сходимость
- 15. Знакопеременные ряды
- 19. Дифференцирование и интегрирование степенных рядов
- 20. Признак Вейерштрасса Рассмотрим ряд
- 21. Степенным рядом называется ряд вида
- 22. Интервал и радиус сходимости степенного ряда
- 24. Ряды Тейлора и Маклорена