13. Достаточные условия экстремума функции двух переменных
Пусть в некоторой области, содержащей точку М0(х0, у0), функция f (x, y) имеет непрерывные частные производные до второго порядка в точке М0(х0, у0) и некоторой её окрестности. Пусть, кроме того, пусть в этой точке М0(х0, у0) выполняются необходимые условия экстремума функции f (x, y)
(1)
Тогда функция f (x, y) в точке М0(х0, у0) имеет максимум, если
В2– А·С < 0, A < 0;
функция f (x, y) в точке М0(х0, у0) имеет минимум, если
В2– А·С < 0, A > 0;
функция f (x, y) в точке М0(х0, у0) не имеет ни максимума, ни минимума, если
В2– А·С > 0;
функция f (x, y) в точке М0(х0, у0) может иметь, и может не иметь экстремум (в этом случае требуются дополнительные исследования), если
В2– А·С = 0;
где
Доказательство. Представим приращение функции по формуле Тейлора в виде
(2)
где
Так как для функции f (x, y) в точке М0(х0, у0) выполнены соотношения (1), то (2) можно представить в виде
(3)
Для достаточно малого Δρ знак левой части соотношения (3) будет совпадать с d2 f
где , Δу ≠ 0 и обозначение sign A означает знак величины А
Знакоопределённость квадратного трёхчлена, а значит определённость знака приращения функции для любых значений λ, имеет место только в одном случае - в случае отрицательного дискриминанта квадратного трехчлена В2 – А С < 0. Если к тому же А < 0, то квадратный трехчлен отрицателен для любых значений λ, значит отрицательно приращение функции, что соответствует случаю локального максимума функции в данной точке.
Yandex.RTB R-A-252273-3- (Функция нескольких переменных)
- 1. Понятие функции двух и более переменных
- 1.1 Предел и непрерывность функции двух переменных
- 2. Примеры дифференциальных уравнений в частных производных 1-го порядка
- 3.Полный дифференциал
- 4. Производная сложной функции.
- 5.1Полный дифференциал
- 6. Касательная плоскость к поверхности
- 6.1Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- 7.Производная по направлению и градиент функции нескольких переменных
- 8. Частные производные и дифференциалы высших порядков
- 9. Неявные функции
- 9.1Дифференцирование неявной функции
- 10. Экстремум функции
- 10.1Критические точки функции. Необходимое условие экстремума.
- 11. Достаточное условие экстремума
- 12. Наибольшее и наименьшее значения функции двух переменных в замкнутой области
- 13. Достаточные условия экстремума функции двух переменных
- 14. Лагранжа метод множителей
- (Интегральное исчисление)
- 1. Первообразная и неопределенный интеграл
- 1.1Таблица простейших интегралов
- 3. Метод подведения под знак дифференциала
- 4. Метод замены переменной
- 5. Интегрирование по частям
- 6. Теорема Безу
- 7. Теорема о разложении многочлена на линейные множители
- 8. Разложение дроби на простейшие.
- 9. Интегрирование рациональных дробей
- 10. Остроградского метод
- 11. Интегрирование тригонометрических функций
- 12 Интегрирование иррациональных выражений
- 14. Интегрирование дифференциального бинома
- 15 Интегрирование иррациональных функций
- 17. Формула Ньютона-Лейбница
- 18. Замена переменной в определенном интеграле
- 19. Несобственные интегралы.
- 20. Приближённое вычисление определённых интегралов
- 22. Длина дуги кривой.
- 23. Вычисление объема тела по площадям его параллельных сечений
- 24. Объем тела вращения.
- 25. Геометрическое и механическое приложения определенного интеграла
- (Числовые ряды)
- 2. Свойства сходящихся рядов.
- 12. Оценка знакочередующегося ряда.
- 13. Знакопеременные ряды
- 14. Абсолютная и условная сходимость
- 15. Знакопеременные ряды
- 19. Дифференцирование и интегрирование степенных рядов
- 20. Признак Вейерштрасса Рассмотрим ряд
- 21. Степенным рядом называется ряд вида
- 22. Интервал и радиус сходимости степенного ряда
- 24. Ряды Тейлора и Маклорена