7.Производная по направлению и градиент функции нескольких переменных
Рассматриваем случай трехмерного пространства . Пусть -- вектор. Будем считать, что . Его координаты представимы в виде направляющих косинусов , где -- углы между вектором и соответствующими осями. Функция определена в окрестности точки . Из точки проведем прямую с направляющим вектором . Выберем на этой прямой точку на расстоянии от . Приращением функции вдоль вектора называется величина
где, -- приращение аргумента вдоль оси . Если существует предел
то он называется производной функции по направлению в точке . Это -- мгновенная скорость изменения функции по направлению .
Замечание 1. Градиентом функции ( ) будем называть вектор из частных производных функции. Частная производная -- это предел отношения приращения функции к приращению аргумента только по одной переменной.
Пусть -- точка на построенной прямой, тогда
И в новой записи (производная сложной функции):
Пусть . Тогда Но, исходя из того, что производная по направлению -- проекции градиента на направление , получим . Значит, -- наибольшая, если совпадает с направлением градиента.
Определение 1. Градиент -- вектор, направленный в сторону наибольшего возрастания функции и равный по величине мгновенной скорости возрастания функции.
Yandex.RTB R-A-252273-3- (Функция нескольких переменных)
- 1. Понятие функции двух и более переменных
- 1.1 Предел и непрерывность функции двух переменных
- 2. Примеры дифференциальных уравнений в частных производных 1-го порядка
- 3.Полный дифференциал
- 4. Производная сложной функции.
- 5.1Полный дифференциал
- 6. Касательная плоскость к поверхности
- 6.1Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- 7.Производная по направлению и градиент функции нескольких переменных
- 8. Частные производные и дифференциалы высших порядков
- 9. Неявные функции
- 9.1Дифференцирование неявной функции
- 10. Экстремум функции
- 10.1Критические точки функции. Необходимое условие экстремума.
- 11. Достаточное условие экстремума
- 12. Наибольшее и наименьшее значения функции двух переменных в замкнутой области
- 13. Достаточные условия экстремума функции двух переменных
- 14. Лагранжа метод множителей
- (Интегральное исчисление)
- 1. Первообразная и неопределенный интеграл
- 1.1Таблица простейших интегралов
- 3. Метод подведения под знак дифференциала
- 4. Метод замены переменной
- 5. Интегрирование по частям
- 6. Теорема Безу
- 7. Теорема о разложении многочлена на линейные множители
- 8. Разложение дроби на простейшие.
- 9. Интегрирование рациональных дробей
- 10. Остроградского метод
- 11. Интегрирование тригонометрических функций
- 12 Интегрирование иррациональных выражений
- 14. Интегрирование дифференциального бинома
- 15 Интегрирование иррациональных функций
- 17. Формула Ньютона-Лейбница
- 18. Замена переменной в определенном интеграле
- 19. Несобственные интегралы.
- 20. Приближённое вычисление определённых интегралов
- 22. Длина дуги кривой.
- 23. Вычисление объема тела по площадям его параллельных сечений
- 24. Объем тела вращения.
- 25. Геометрическое и механическое приложения определенного интеграла
- (Числовые ряды)
- 2. Свойства сходящихся рядов.
- 12. Оценка знакочередующегося ряда.
- 13. Знакопеременные ряды
- 14. Абсолютная и условная сходимость
- 15. Знакопеременные ряды
- 19. Дифференцирование и интегрирование степенных рядов
- 20. Признак Вейерштрасса Рассмотрим ряд
- 21. Степенным рядом называется ряд вида
- 22. Интервал и радиус сходимости степенного ряда
- 24. Ряды Тейлора и Маклорена