logo search
теория вероятн

Критическая область. Область принятия гипотезы. Критические точки

После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества, одно из которых содержит значения критерия, при которых нулевая гипотеза отвергается, а другое – при которых она принимается.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.

Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых гипотезу принимают.

Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если области принятия гипотезы – гипотезу принимают.

Так как критерий K – одномерная случайная величина, то все ее возможные значения принадлежат некоторому интервалу и, соответственно, должны существовать точки, разделяющие критическую область и область принятия гипотезы. Такие точки называются критическими точками.

Различают одностороннюю (правостороннюю и левостороннюю) и двустороннюю критические области.

Правосторонней называют критическую область, определяемую неравенством , где – положительное число.

Левосторонней называют критическую область, определяемую неравенством , где – отрицательное число.

Двусторонней называют критическую область, определяемую неравенствами , где . В частности, если критические точки симметричны относительно нуля, двусторонняя критическая область определяется неравенствами или равносильным неравенством . Различия между вариантами критических областей иллюстрирует следующий рисунок.

Рис. 1. Различные варианты критических областей a) правосторонняя, b) левосторонняя, с) двусторонняя

Резюмируя, сформулируем этапы проверки статистической гипотезы: