logo
теория вероятн

Наивероятнейшее число наступления событий в схеме Бернулли

Число наступлений события называется наивероятнейшим, если оно имеет наибольшую вероятность по сравнению с вероятностями наступления любое другое количество раз.

Теорема. Наивероятнейшее число наступлений события в независимых испытаниях заключено между числами и .

Доказательство. По формуле Бернулли при :

.

Следовательно, вероятность будет больше, меньше или равна вероятности в зависимости от того, какое из трех соотношений будет выполняться:

,

,

.

Если переписать эти соотношения в более простом виде:

,

,

,

То приходим к выводу, что:

, если ;

, если ;

, если .

Следовательно, вероятность при возрастает, а при – убывает. В случае, когда не является целым числом, для наивероятнейшего числа наступлений события (обозначим его ) должно выполняться неравенство , что возможно при , т.е. при . В то же время, должно выполняться неравенство , что возможно при , т.е. при . Таким образом, .

Заметим, что разность между и равна единице, значит, в большинстве случаев число единственно. Если – целое число, то наивероятнейших чисел два: и . В этом случае, поскольку , то, а .

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4