Корреляционный момент
Характеристикой зависимости между случайными величинами и служит математическое ожидание произведения отклонений и от их центров распределений (так иногда называют математическое ожидание случайной величины), которое называется корреляционным моментом или ковариацией:
Для вычисления корреляционного момента дискретных величин используют формулу:
а для непрерывных величин – формулу:
Эту формулу можно интерпретировать так. Если при больших значениях более вероятны большие значения, а при малых значениях более вероятны малые значения , то в правой части формулы положительные слагаемые доминируют, и ковариация принимает положительные значения.
Если же более вероятны произведения , состоящие из сомножителей разного знака, то есть исходы случайного эксперимента, приводящие к большим значениям в основном приводят к малым значениям и наоборот, то ковариация принимает большие по модулю отрицательные значения.
В первом случае принято говорить о прямой связи: с ростом случайная величина имеет тенденцию к возрастанию.
Во втором случае говорят об обратной связи: с ростом случайная величина имеет тенденцию к уменьшению или падению.
Если примерно одинаковый вклад в сумму дают и положительные и отрицательные произведения , то можно сказать, что в сумме они будут “гасить” друг друга и ковариация будет близка к нулю. В этом случае не просматривается зависимость одной случайной величины от другой.
Теорема. Корреляционный момент двух независимых случайных величин и равен нулю.
Доказательство. Так как и – независимые случайные величины, то их отклонения и также независимы. Пользуясь свойствами математического ожидания (математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий сомножителей) и отклонения (математическое ожидание отклонения равно нулю), получим:
.
Ковариацию можно представить в виде:
Из определения корреляционного момента следует, что он имеет размерность, равную произведению размерностей величин и . Другими словами, величина корреляционного момента зависит от единиц измерения случайных величин. По этой причине для одних и тех же двух величин величина корреляционного момента имеет различные значения в зависимости от того, в каких единицах были измерены величины. Такая особенность корреляционного момента является недостатком этой числовой характеристики, поскольку сравнение корреляционных моментов различных систем случайных величин становится затруднительным.
Для того, чтобы устранить этот недостаток, вводят новую числовую характеристику – коэффициент корреляции.
Yandex.RTB R-A-252273-3- Тема 1. Вероятностные пространства 30
- Тема 2. Основные вероятностные схемы испытаний 60
- Тема 3. Случайные величины 87
- Тема 4. Математическая статистика 140
- Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- Особенности изучения теории вероятностей и математической статистики менеджером
- Краткие сведения
- Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- Основные понятия теории вероятностей
- Случайные события
- Понятие случайного эксперимента
- Пространство элементарных событий
- Наступление события, благоприятствующие исходы
- Совместные (совместимые), несовместные (несовместимые) события
- Достоверное и невозможное события
- Алгебра событий Операции над событиями (сумма, разность, произведение)
- Свойства операций над событиями
- Алгебра и сигма-алгебра событий
- Общее определение вероятности
- Классическое определение вероятности события. Случаи равновероятных исходов
- Статистическое определение вероятности события. Случаи неравновероятных исходов
- Геометрические вероятности
- Аксиоматическое построение теории вероятностей
- , Т.Е. Вероятность достоверного события равна единице;
- Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- Полная группа событий
- Условная вероятность
- Формула умножения вероятностей
- Формула сложения вероятностей
- Независимость событий
- Простейшие свойства вероятностей
- Свойства условных вероятностей
- Формула полной вероятности. Формула Байеса
- Контрольные вопросы к теме №1
- Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- Классическая вероятностная схема
- Правила суммы и произведения
- Схемы выбора. Основные понятия комбинаторики
- Выбор без возвращения, с учетом порядка
- Выбор без возвращения, без учета порядка
- Выбор с возвращением и с учетом порядка
- Выбор с возвращением и без учета порядка
- Урновая схема
- Наивероятнейшее число наступления событий в схеме Бернулли
- Предельные теоремы для схемы Бернулли
- Локальная теорема Муавра–Лапласа
- Интегральная теорема Муавра – Лапласа
- Теорема Пуассона
- Понятие потока событий
- Полиномиальная схема
- Понятие цепи Маркова
- Однородные цепи Маркова
- Равенство Маркова
- Предельные вероятности
- Контрольные вопросы к теме №2
- Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- Непрерывные и дискретные случайные величины
- Закон распределения случайной величины
- Функция распределения случайной величины и ее свойства
- Свойства функции распределения
- Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- Свойства математического ожидания
- Дисперсия случайной величины и ее свойства
- Среднеквадратическое отклонение
- Начальные и центральные моменты
- Основные примеры распределений дискретной случайной величины
- Биномиальное распределение, его математическое ожидание, дисперсия
- Распределение Пуассона
- Геометрическое распределение
- Непрерывные случайные величины Функция и плотность распределения вероятностей
- Числовые характеристики непрерывных случайных величин
- Основные примеры распределений непрерывной случайной величины Равномерное распределение
- Показательное распределение
- Нормальное распределение
- Свойства функции Гаусса
- Центральная предельная теорема
- Вероятность попадания нормальной случайной величины в заданный интервал
- Функция Лапласа и ее свойства
- Вычисление вероятности заданного отклонения. Правило «трех сигм»
- Лекция 4. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двумерной случайной величины
- Свойства совместной функции распределения двумерной случайной величины
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Условное математическое ожидание
- Независимые случайные величины
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Линейная регрессия. Метод наименьших квадратов
- Распределение 2
- Распределение Стьюдента
- Распределение Фишера
- Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- Контрольные вопросы к теме №3
- Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- Выборочный метод и его основные понятия
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин
- Полигон и гистограмма
- Эмпирическая функция распределения и ее свойства
- Свойства эмпирической функции распределения
- Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- Выборочные среднее и дисперсия
- Надежность и доверительный интервал
- Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Проверка статистических гипотез
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки
- Критерий согласия Пирсона о виде распределения
- Элементы теории корреляции
- Выборочные уравнения регрессии
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель
- Обратная модель
- Степенная модель
- Показательная модель
- Цепи Маркова Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода
- Равенство Маркова
- Цепи Маркова с непрерывным временем
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Предельные вероятности
- Контрольные вопросы к теме №4
- Экзаменационные вопросы
- Литература
- Теория вероятностей и математическая статистика
- Технический редактор т.В. Жибуль
- 220007, Г. Минск, ул. Московская, 17.