Алгебра и сигма-алгебра событий
В случае конечной или счетной теоретико-вероятностной схемы в качестве события рассматривается любое подмножество конечного или счетного пространства элементарных событий . Если же пространство непрерывно, то имеет место континуум элементарных исходов. Попытка считать событием любое подмножество непрерывного пространства сопряжена с большими трудностями.
Поэтому в общем случае приходится иметь дело не со всеми подмножествами пространства , а лишь с определенным классом, замкнутым относительно операций суммы, произведения и дополнения.
Предположим, что является пространством всех элементарных исходов для какого-нибудь случайного эксперимента, каждому результату которого соответствует ровно одна точка из , а разным результатам соответствуют разные точки. Выделим некоторую совокупность случайных событий , определенных на пространстве элементарных исходов . Другими словами, выделим совокупность подмножеств множества . Причем, наложим условие, что содержит как случайные события , так и события, полученные в результате применения любой из описанных операций к любым элементам системы.
Совокупность случайных событий , определенных на пространстве элементарных исходов , называется алгеброй или булевой алгеброй – по имени английского математика Дж. Буля (1815 – 1864), если выполнены следующие условия:
(алгебра событий содержит достоверное событие);
Если , то для любых (вместе с любым конечным набором событий алгебра содержит и их сумму);
Если , то (вместе с любым событием алгебра содержит противоположное событие).
Можно показать, в частности, что: , если и , то:
;
.
Другими словами, оказывается, что условий 1 – 3 достаточно для того, чтобы любое конечное число других операций над случайными событиями не выводило бы нас за пределы алгебры . Таким образом, алгебра множеств – это система подмножеств некоторого множества , замкнутая относительно операций суммы (объединения), произведения (пересечения) и дополнения.
Очевидно, что одно и то же множество порождает различные алгебры. Самая «бедная» алгебра состоит из двух множеств – пустого множества и множества :
.
В понятиях теории вероятностей это соответствует невозможному и достоверному событиям. Любое подмножество порождает четырехэлементную алгебру:
Для экспериментов с конечным числом исходов множество–степень множества , т.е. совокупность всех подмножеств , включающая пустое множество , составляет алгебру , причем это самая «богатая» алгебра, порождаемая множеством . Поэтому для таких экспериментов любое подмножество множества может интерпретироваться как наблюдаемое событие, а все события, связанные с пространством элементарных исходов , образуют алгебру наблюдаемых случайных событий.
Под наблюдаемым событием понимается такое подмножество множества , которое одновременно принадлежит и булевой алгебре . Таким образом, класс наблюдаемых в данном эксперименте событий, вообще говоря, ỳже класса всех подмножеств множества . Если, например, , но , то событие по определению не наблюдаемо в данном эксперименте. Такое определение наблюдаемого события согласуется с введенным ранее эмпирическим понятием случайного события, как наблюдаемого результата эксперимента.
При рассмотрении многих задач теории вероятностей приходится иметь дело и с бесконечным числом операций. Для того, чтобы можно было рассматривать бесконечное число операций над событиями, необходимо усилить ограничения, налагаемые на алгебру .
Система подмножеств множества , называется -алгеброй, а соответствующее множество событий борелевским, если она удовлетворяет следующим условиям:
(–алгебра событий содержит достоверное событие);
Если , то для любых (вместе с любым конечным или счетным набором событий –алгебра содержит и их сумму);
Если , то (вместе с любым событием –алгебра содержит противоположное событие).
Условие 2 для алгебры является следствием условия 2 для –алгебры, поэтому требования для –алгебры более сильные.
Используя условие 3 и равенство , легко убедиться в справедливости следующего утверждения.
Пусть – –алгебра. Тогда, если , то для любых .
Таким образом, счетное число операций суммирования или перемножения событий не выводит за пределы –алгебры.
Вообще говоря, действия над событиями важны не сами по себе, а как средство определения вероятностей одних событий через вероятности других событий. Далее будет введена вероятность случайного события как функция, заданная на подмножествах пространства . Прежде, чем определять эту функцию, следует задать область определения этой функции. Поскольку эта функция задается для всех наблюдаемых событий, связанных с пространством элементарных исходов , то функция должна быть определена на системе подмножеств пространства , которая является –алгеброй. Поэтому разумно поставить следующее условие: если известны вероятности событий и , то должны быть определены правила вычисления вероятностей событий , , а также вероятности противоположных событий и .
Yandex.RTB R-A-252273-3- Тема 1. Вероятностные пространства 30
- Тема 2. Основные вероятностные схемы испытаний 60
- Тема 3. Случайные величины 87
- Тема 4. Математическая статистика 140
- Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- Особенности изучения теории вероятностей и математической статистики менеджером
- Краткие сведения
- Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- Основные понятия теории вероятностей
- Случайные события
- Понятие случайного эксперимента
- Пространство элементарных событий
- Наступление события, благоприятствующие исходы
- Совместные (совместимые), несовместные (несовместимые) события
- Достоверное и невозможное события
- Алгебра событий Операции над событиями (сумма, разность, произведение)
- Свойства операций над событиями
- Алгебра и сигма-алгебра событий
- Общее определение вероятности
- Классическое определение вероятности события. Случаи равновероятных исходов
- Статистическое определение вероятности события. Случаи неравновероятных исходов
- Геометрические вероятности
- Аксиоматическое построение теории вероятностей
- , Т.Е. Вероятность достоверного события равна единице;
- Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- Полная группа событий
- Условная вероятность
- Формула умножения вероятностей
- Формула сложения вероятностей
- Независимость событий
- Простейшие свойства вероятностей
- Свойства условных вероятностей
- Формула полной вероятности. Формула Байеса
- Контрольные вопросы к теме №1
- Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- Классическая вероятностная схема
- Правила суммы и произведения
- Схемы выбора. Основные понятия комбинаторики
- Выбор без возвращения, с учетом порядка
- Выбор без возвращения, без учета порядка
- Выбор с возвращением и с учетом порядка
- Выбор с возвращением и без учета порядка
- Урновая схема
- Наивероятнейшее число наступления событий в схеме Бернулли
- Предельные теоремы для схемы Бернулли
- Локальная теорема Муавра–Лапласа
- Интегральная теорема Муавра – Лапласа
- Теорема Пуассона
- Понятие потока событий
- Полиномиальная схема
- Понятие цепи Маркова
- Однородные цепи Маркова
- Равенство Маркова
- Предельные вероятности
- Контрольные вопросы к теме №2
- Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- Непрерывные и дискретные случайные величины
- Закон распределения случайной величины
- Функция распределения случайной величины и ее свойства
- Свойства функции распределения
- Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- Свойства математического ожидания
- Дисперсия случайной величины и ее свойства
- Среднеквадратическое отклонение
- Начальные и центральные моменты
- Основные примеры распределений дискретной случайной величины
- Биномиальное распределение, его математическое ожидание, дисперсия
- Распределение Пуассона
- Геометрическое распределение
- Непрерывные случайные величины Функция и плотность распределения вероятностей
- Числовые характеристики непрерывных случайных величин
- Основные примеры распределений непрерывной случайной величины Равномерное распределение
- Показательное распределение
- Нормальное распределение
- Свойства функции Гаусса
- Центральная предельная теорема
- Вероятность попадания нормальной случайной величины в заданный интервал
- Функция Лапласа и ее свойства
- Вычисление вероятности заданного отклонения. Правило «трех сигм»
- Лекция 4. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двумерной случайной величины
- Свойства совместной функции распределения двумерной случайной величины
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Условное математическое ожидание
- Независимые случайные величины
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Линейная регрессия. Метод наименьших квадратов
- Распределение 2
- Распределение Стьюдента
- Распределение Фишера
- Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- Контрольные вопросы к теме №3
- Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- Выборочный метод и его основные понятия
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин
- Полигон и гистограмма
- Эмпирическая функция распределения и ее свойства
- Свойства эмпирической функции распределения
- Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- Выборочные среднее и дисперсия
- Надежность и доверительный интервал
- Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Проверка статистических гипотез
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки
- Критерий согласия Пирсона о виде распределения
- Элементы теории корреляции
- Выборочные уравнения регрессии
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель
- Обратная модель
- Степенная модель
- Показательная модель
- Цепи Маркова Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода
- Равенство Маркова
- Цепи Маркова с непрерывным временем
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Предельные вероятности
- Контрольные вопросы к теме №4
- Экзаменационные вопросы
- Литература
- Теория вероятностей и математическая статистика
- Технический редактор т.В. Жибуль
- 220007, Г. Минск, ул. Московская, 17.