logo
теория вероятн

Классическая вероятностная схема

Вероятность определена как числовая характеристика возможности появления случайного события. При этом предполагается, что условия эксперимента могут быть воспроизведены неограниченное число раз. Рассмотрим некоторый случайный эксперимент, для которого определено множество равновозможных элементарных исходов . Равновозможность исходов есть проявление симметрии случайного эксперимента.

Классической схемой, или схемой случаев, называется испытание, при котором число элементарных исходов конечно, и все они несовместны и равновозможны.

Пусть данный эксперимент имеет возможных исходов и все они равновозможны (имеют одинаковые шансы) и несовместны (никакие два из них не могут наступить одновременно). Вероятность события называется отношение числа благоприятных исходов к общему числу несовместных равновозможных исходов :

.

Это классическое определение вероятности удовлетворяет основным требованиям, предъявляемым к математическим определениям вероятностей, а именно, оно удовлетворяет аксиомам теории вероятности, а также позволяет определить вероятность событий a priori, т.е. не проводя экспериментов. Итак, чтобы пользоваться классическим определением вероятности, нужно уметь подсчитывать число благоприятных исходов и общее число исходов . Раздел математики, в котором исследуются различные задачи на перебор, называется комбинаторикой. Кроме теории вероятностей комбинаторика используется в некоторых задачах экономики, биологии, теории вычислительных машин, теории автоматов и т.д.

При решении ряда теоретических и практических задач требуется из конечного множества элементов по заданным правилам составлять различные комбинации и производить подсчет числа всех возможных таких комбинаций. Такие задачи принято называть комбинаторными.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4