logo
теория вероятн

Вычисление вероятности заданного отклонения. Правило «трех сигм»

Часто требуется вычислить вероятность того, что отклонение нормально распределенной случайной величины по абсолютной величине меньше заданного положительного числа , т.е. требуется найти вероятность того, что выполняется неравенство .

Заменим это неравенство равносильным ему двойным неравенством .

Воспользуемся формулой:

Получим:

.

Если выразить отклонение в средних квадратичных отклонениях: , получим:

Если и, следовательно, , получим:

,

т.е. такое отклонение является почти достоверным (правило «трех сигм»).

Другими словами, если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратичного отклонения. В этом и состоит сущность правила «трех сигм».

На практике правило «трех сигм» применяют так: если распределение изучаемой средней величины неизвестно, но правило «трех сигм» выполняется, то есть основания полагать, что изучаемая величина распределена нормально, и наоборот.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4