logo
теория вероятн

Геометрические вероятности

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область (отрезок, часть плоскости и т.д.).

Приведем формальное определение вероятностей для испытаний с бесконечным числом исходов. В подобных случаях пространство элементарных исходов может быть областью , а под событием можно понимать исходы, входящие в область .

Пусть на область наугад бросается «точка». Какова вероятность того, что эта точка попадет в область , являющуюся частью области ?

1. Пусть отрезок , длину которого обозначим как , составляет часть отрезка длина которого . На отрезок наудачу поставлена точка. Это означает выполнение следующих предположений:

В этих предположениях вероятность попадания точки на отрезок определяется равенством .

2. Пусть плоская фигура с площадью составляет часть плоской фигуры , площадь которой . На фигуру наудачу брошена точка. Это означает выполнение следующих предположений:

В этих предположениях вероятность попадания точки на фигуру определяется равенством .

3. Аналогично вводится понятие геометрической вероятности при бросании точки в пространственную область объема , содержащую область объема : .

В общем случае понятие геометрической вероятности вводится следующим образом.

Пусть – некоторое множество (базис), а – -алгебра его подмножеств. Функция называется мерой, на , если она удовлетворяет условиям:

Обозначим меру области (длину, площадь, объем) через , а меру области – через ; обозначим через событие «попадание брошенной точки в область , которая содержится в области ». Вероятность события , т.е. вероятность попадания в область точки, брошенной в область , определяется формулой:

.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4