Финальные вероятности состояний системы
Если процесс, протекающий в системе, длится достаточно долго, то имеет смысл говорить о предельном поведении вероятностей при . В некоторых случаях существуют финальные (предельные) вероятности состояний:
, .,
не зависящие от того, в каком состоянии система находилась в начальный момент. Говорят, что в системе устанавливается предельный стационарный режим, при котором она переходит из состояния в состояние, но вероятности состояний уже не меняются во времени. Система, для которой существуют финальные состояния, называется эргодической, а соответствующий случайный процесс – эргодическим.
Финальные вероятности системы могут быть получены путем решения системы линейных алгебраических уравнений, которые получаются из дифференциальных уравнений Колмогорова, если приравнять производные к нулю, а вероятностные функции состояний в правых частях уравнений Колмогорова заменить на неизвестные финальные вероятности .
Таким образом, для системы с состояниями получается система линейных однородных алгебраических уравнений с неизвестными , которые можно найти с точностью до постоянного множителя. Для нахождения их точных значений к уравнениям добавляют нормировочное условие , пользуясь которым можно выразить любую из вероятностей через другие и отбросить одно из уравнений.
Р ассмотрим следующий пример. Имеется размеченный граф состояний системы (рис.2). Необходимо составить систему дифференциальных уравнений Колмогорова и записать начальные условия для решения этой системы, если известно, что в начальный момент система находилась в состоянии .
Решение. Согласно приведенному выше мнемоническому правилу, система дифференциальных уравнений Колмогорова имеет вид:
Начальные условия при : .
При функции стремятся к предельным (финальным) вероятностям состояний системы. Поскольку финальные вероятности не зависят от времени, в системе дифференциальных уравнений Колмогорова все левые части принимаем равными нулю. При этом система дифференциальных уравнений превратится в систему линейных алгебраических уравнений вида:
Решая ее с учетом условия , получим все предельные вероятности. Эти вероятности представляют собой среднее относительное время пребывания системы в каждом из состояний.
Финальные состояния марковской системы с непрерывным временем существуют при следующих условиях:
плотности вероятности всех переходов не должны зависеть от времени ;
из любого состояния системы возможен переход в любое другое состояние за конечное число шагов.
Например, для системы, изображенной на рис. 3, финальные вероятности не существуют.
В заключение рассмотрим одну из наиболее простых и часто встречающихся на практике разновидностей дискретных марковских цепей с непрерывным временем – так называемую схему гибели и размножения.
Схема гибели и размножения
Марковский процесс с дискретными состояниями называется процессом гибели и размножения, если все состояния можно вытянуть в цепочку, в которой каждое из промежуточных состояний может переходить только в соседние состояния, а крайние состояния переходят лишь в состояния и соответственно. Граф состояний такой системы приведен на рис.4.
Название схемы взято из биологических задач, где состояние популяции означает наличие в ней особей.
На рис.4 переход вправо соответствует увеличению популяции, влево – ее уменьшению. Таким образом, можно определить как интенсивности размножения, а – как интенсивности гибели. Используется следующее соглашение: буквам и приписывается индекс того состояния, из которого выходит стрелка.
Марковским процессом гибели и размножения с непрерывным временем называется такой случайный процесс, исследуемый параметр которого может принимать только целые неотрицательные значения. Изменения рассматриваемого параметра могут происходить в любой момент времени, т.е. в любой момент времени он может либо увеличиться, либо уменьшиться на единицу.
Процессом чистого размножения называется такой процесс, у которого интенсивности всех потоков гибели равны нулю; аналогично процессом чистой «гибели» называется процесс, у которого равны нулю интенсивности всех потоков размножения.
Предельные (финальные) вероятности состояний для простейшего эргодического процесса гибели и размножения, находящегося в стационарном режиме, определяются по следующим формулам:
В качестве примера решения системы уравнений схемы гибели и размножения рассмотрим эксплуатацию автомобилей в крупной транспортной фирме.
Интенсивность поступления автомобилей на предприятие равна . Каждый поступивший на предприятие автомобиль списывается через случайное время . Срок службы автомобиля распределен по показательному закону с параметром . Процесс эксплуатации автомобилей является случайным процессом. – число автомобилей данной марки, находящихся в эксплуатации в момент времени .
Рассмотрим два случая: 1) нет ограничений на число эксплуатируемых автомобилей, 2) на предприятии может эксплуатироваться не более автомобилей.
Если в начальный момент на предприятии не было ни одного автомобиля, то решать систему уравнений нужно при начальных условиях:
.
Аналогично, если при эксплуатировалось автомобилей, то начальные условия имеют вид:
Решение системы дифференциальных уравнений Колмогорова при произвольном виде функции не может быть найдено в аналитическом виде. Однако при постоянных интенсивностях потоков гибели и размножения и конечном числе состояний будет существовать стационарный режим. Система в этом случае является простейшей эргодической системой.
Если интенсивности потока поступления и списания автомобилей постоянны, то оказываются справедливы формулы:
1. Максимальное число автомобилей не ограничено:
.
2. Математическое ожидание (среднее значение) числа эксплуатируемых автомобилей:
;
При ограниченном
В этом случае математическое ожидание равно:
- Тема 1. Вероятностные пространства 30
- Тема 2. Основные вероятностные схемы испытаний 60
- Тема 3. Случайные величины 87
- Тема 4. Математическая статистика 140
- Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- Особенности изучения теории вероятностей и математической статистики менеджером
- Краткие сведения
- Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- Основные понятия теории вероятностей
- Случайные события
- Понятие случайного эксперимента
- Пространство элементарных событий
- Наступление события, благоприятствующие исходы
- Совместные (совместимые), несовместные (несовместимые) события
- Достоверное и невозможное события
- Алгебра событий Операции над событиями (сумма, разность, произведение)
- Свойства операций над событиями
- Алгебра и сигма-алгебра событий
- Общее определение вероятности
- Классическое определение вероятности события. Случаи равновероятных исходов
- Статистическое определение вероятности события. Случаи неравновероятных исходов
- Геометрические вероятности
- Аксиоматическое построение теории вероятностей
- , Т.Е. Вероятность достоверного события равна единице;
- Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- Полная группа событий
- Условная вероятность
- Формула умножения вероятностей
- Формула сложения вероятностей
- Независимость событий
- Простейшие свойства вероятностей
- Свойства условных вероятностей
- Формула полной вероятности. Формула Байеса
- Контрольные вопросы к теме №1
- Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- Классическая вероятностная схема
- Правила суммы и произведения
- Схемы выбора. Основные понятия комбинаторики
- Выбор без возвращения, с учетом порядка
- Выбор без возвращения, без учета порядка
- Выбор с возвращением и с учетом порядка
- Выбор с возвращением и без учета порядка
- Урновая схема
- Наивероятнейшее число наступления событий в схеме Бернулли
- Предельные теоремы для схемы Бернулли
- Локальная теорема Муавра–Лапласа
- Интегральная теорема Муавра – Лапласа
- Теорема Пуассона
- Понятие потока событий
- Полиномиальная схема
- Понятие цепи Маркова
- Однородные цепи Маркова
- Равенство Маркова
- Предельные вероятности
- Контрольные вопросы к теме №2
- Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- Непрерывные и дискретные случайные величины
- Закон распределения случайной величины
- Функция распределения случайной величины и ее свойства
- Свойства функции распределения
- Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- Свойства математического ожидания
- Дисперсия случайной величины и ее свойства
- Среднеквадратическое отклонение
- Начальные и центральные моменты
- Основные примеры распределений дискретной случайной величины
- Биномиальное распределение, его математическое ожидание, дисперсия
- Распределение Пуассона
- Геометрическое распределение
- Непрерывные случайные величины Функция и плотность распределения вероятностей
- Числовые характеристики непрерывных случайных величин
- Основные примеры распределений непрерывной случайной величины Равномерное распределение
- Показательное распределение
- Нормальное распределение
- Свойства функции Гаусса
- Центральная предельная теорема
- Вероятность попадания нормальной случайной величины в заданный интервал
- Функция Лапласа и ее свойства
- Вычисление вероятности заданного отклонения. Правило «трех сигм»
- Лекция 4. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двумерной случайной величины
- Свойства совместной функции распределения двумерной случайной величины
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Условное математическое ожидание
- Независимые случайные величины
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Линейная регрессия. Метод наименьших квадратов
- Распределение 2
- Распределение Стьюдента
- Распределение Фишера
- Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- Контрольные вопросы к теме №3
- Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- Выборочный метод и его основные понятия
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин
- Полигон и гистограмма
- Эмпирическая функция распределения и ее свойства
- Свойства эмпирической функции распределения
- Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- Выборочные среднее и дисперсия
- Надежность и доверительный интервал
- Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Проверка статистических гипотез
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки
- Критерий согласия Пирсона о виде распределения
- Элементы теории корреляции
- Выборочные уравнения регрессии
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель
- Обратная модель
- Степенная модель
- Показательная модель
- Цепи Маркова Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода
- Равенство Маркова
- Цепи Маркова с непрерывным временем
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Предельные вероятности
- Контрольные вопросы к теме №4
- Экзаменационные вопросы
- Литература
- Теория вероятностей и математическая статистика
- Технический редактор т.В. Жибуль
- 220007, Г. Минск, ул. Московская, 17.