Равенство Маркова
Обозначим через вероятность того, что в результате n шагов (испытаний) система перейдет из состояния в состояние . Например, – вероятность перехода за 10 шагов из третьего состояния в шестое. Отметим, что при n=1 эта вероятность сводится просто к переходной вероятности .
Возникает вопрос, как, зная переходные вероятности , найти вероятности перехода состояния в состояние за n шагов. С этой целью вводится в рассмотрение промежуточное (между и ) состояние r. Другими словами, полагают, что из первоначального состояния за m шагов система перейдет в промежуточное состояние r с вероятностью , после чего за оставшиеся n–m шагов из промежуточного состояния r она перейдет в конечное состояние с вероятностью . Используя формулу полной вероятности, можно показать, что справедлива формула:
.
Эту формулу называют равенством Маркова.
Зная все переходные вероятности , т.е. зная матрицу перехода из состояния в состояние за один шаг, можно найти вероятности перехода из состояния в состояние за два шага, а значит, и саму матрицу перехода , далее – по известной матрице – найти и т.д.
Действительно, полагая в равенстве Маркова n=2, m=1 получим:
или . В матричном виде это можно записать, как .
Полагая n=3, m=2, получим . В общем случае справедливо соотношение .
Пример. Пусть матрица перехода равна .
Требуется найти матрицу перехода:
.
Умножая матрицу саму на себя, получим .
Для практических применений чрезвычайно важным является вопрос о расчете вероятности нахождения системы в том или ином состоянии в конкретный момент времени. Решение этого вопроса требует знания начальных условий, т.е. вероятностей нахождения системы в определенных состояниях в начальный момент времени. Начальным распределением вероятностей марковской цепи называется распределение вероятностей состояний в начале процесса .
Здесь через обозначена вероятность нахождения системы в состоянии в начальный момент времени. В частном случае, если начальное состояние системы в точности известно (например ), то начальная вероятность , а все остальные равны нулю.
Если для однородной цепи Маркова заданы начальное распределение вероятностей и матрица перехода, то вероятности состояний системы на n-м шаге вычисляются по рекуррентной формуле:
.
Для иллюстрации приведем простой пример. Рассмотрим процесс функционирования некоторой системы (например, прибора). Пусть прибор в течение одних суток может находиться в одном из двух состояний – исправном ( ) и неисправном ( ). В результате массовых наблюдений за работой прибора составлена следующая матрица перехода:
,
где – вероятность того, что прибор останется в исправном состоянии;
– вероятность перехода прибора из исправного в неисправное состояние;
– вероятность перехода прибора из неисправного в исправное состояние;
– вероятность того, что прибор останется в состоянии «неисправен».
Пусть вектор начальных вероятностей состояний прибора задан соотношением , т.е. (в начальный момент прибор был неисправен). Требуется определить вероятности состояния прибора через трое суток.
Решение: Используя матрицу перехода, определим вероятности состояний после первого шага (после первых суток):
.
Вероятности состояний после второго шага (вторых суток) равны:
Наконец, вероятности состояний после третьего шага (третьих суток) равны:
.
Таким образом, вероятность того, что прибор будет находиться в исправном состоянии равна 0,819, и того, что в неисправном – соответственно 0,181.
- Тема 1. Вероятностные пространства 30
- Тема 2. Основные вероятностные схемы испытаний 60
- Тема 3. Случайные величины 87
- Тема 4. Математическая статистика 140
- Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- Особенности изучения теории вероятностей и математической статистики менеджером
- Краткие сведения
- Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- Основные понятия теории вероятностей
- Случайные события
- Понятие случайного эксперимента
- Пространство элементарных событий
- Наступление события, благоприятствующие исходы
- Совместные (совместимые), несовместные (несовместимые) события
- Достоверное и невозможное события
- Алгебра событий Операции над событиями (сумма, разность, произведение)
- Свойства операций над событиями
- Алгебра и сигма-алгебра событий
- Общее определение вероятности
- Классическое определение вероятности события. Случаи равновероятных исходов
- Статистическое определение вероятности события. Случаи неравновероятных исходов
- Геометрические вероятности
- Аксиоматическое построение теории вероятностей
- , Т.Е. Вероятность достоверного события равна единице;
- Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- Полная группа событий
- Условная вероятность
- Формула умножения вероятностей
- Формула сложения вероятностей
- Независимость событий
- Простейшие свойства вероятностей
- Свойства условных вероятностей
- Формула полной вероятности. Формула Байеса
- Контрольные вопросы к теме №1
- Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- Классическая вероятностная схема
- Правила суммы и произведения
- Схемы выбора. Основные понятия комбинаторики
- Выбор без возвращения, с учетом порядка
- Выбор без возвращения, без учета порядка
- Выбор с возвращением и с учетом порядка
- Выбор с возвращением и без учета порядка
- Урновая схема
- Наивероятнейшее число наступления событий в схеме Бернулли
- Предельные теоремы для схемы Бернулли
- Локальная теорема Муавра–Лапласа
- Интегральная теорема Муавра – Лапласа
- Теорема Пуассона
- Понятие потока событий
- Полиномиальная схема
- Понятие цепи Маркова
- Однородные цепи Маркова
- Равенство Маркова
- Предельные вероятности
- Контрольные вопросы к теме №2
- Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- Непрерывные и дискретные случайные величины
- Закон распределения случайной величины
- Функция распределения случайной величины и ее свойства
- Свойства функции распределения
- Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- Свойства математического ожидания
- Дисперсия случайной величины и ее свойства
- Среднеквадратическое отклонение
- Начальные и центральные моменты
- Основные примеры распределений дискретной случайной величины
- Биномиальное распределение, его математическое ожидание, дисперсия
- Распределение Пуассона
- Геометрическое распределение
- Непрерывные случайные величины Функция и плотность распределения вероятностей
- Числовые характеристики непрерывных случайных величин
- Основные примеры распределений непрерывной случайной величины Равномерное распределение
- Показательное распределение
- Нормальное распределение
- Свойства функции Гаусса
- Центральная предельная теорема
- Вероятность попадания нормальной случайной величины в заданный интервал
- Функция Лапласа и ее свойства
- Вычисление вероятности заданного отклонения. Правило «трех сигм»
- Лекция 4. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двумерной случайной величины
- Свойства совместной функции распределения двумерной случайной величины
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Условное математическое ожидание
- Независимые случайные величины
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Линейная регрессия. Метод наименьших квадратов
- Распределение 2
- Распределение Стьюдента
- Распределение Фишера
- Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- Контрольные вопросы к теме №3
- Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- Выборочный метод и его основные понятия
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин
- Полигон и гистограмма
- Эмпирическая функция распределения и ее свойства
- Свойства эмпирической функции распределения
- Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- Выборочные среднее и дисперсия
- Надежность и доверительный интервал
- Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Проверка статистических гипотез
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки
- Критерий согласия Пирсона о виде распределения
- Элементы теории корреляции
- Выборочные уравнения регрессии
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель
- Обратная модель
- Степенная модель
- Показательная модель
- Цепи Маркова Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода
- Равенство Маркова
- Цепи Маркова с непрерывным временем
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Предельные вероятности
- Контрольные вопросы к теме №4
- Экзаменационные вопросы
- Литература
- Теория вероятностей и математическая статистика
- Технический редактор т.В. Жибуль
- 220007, Г. Минск, ул. Московская, 17.