logo search
теория вероятн

Выборочные среднее и дисперсия

Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.

Выборочным средним называют среднее арифметическое значение признака выборочной совокупности. Если все значения признака выборки объема n различны, то:

.

Если значения признака имеют частоты соответственно, причем , то:

.

Выборочное среднее, найденное по данным одной выборки, равно определенному числу. При извлечении других выборок того же объема выборочное среднее будет меняться от выборки к выборке. То есть выборочное среднее можно рассматривать, как случайную величину, и можно говорить о его распределениях (теоретическом и эмпирическом) и о числовых характеристиках этого распределения (например, о математическом ожидании и дисперсии).

Для охарактеризования рассеяния наблюдаемых значений количественного признака выборки вокруг среднего значения вводится выборочная дисперсия. Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения . Если все значения признака выборки объема n различны, то:

.

Если значения признака имеют частоты соответственно, причем , то:

.

Аналогично выборочным среднему и дисперсии определяются генеральные среднее и дисперсия, характеризующие генеральную совокупность в целом. Для расчета этих характеристик достаточно в вышеприведенных соотношениях заменить объем выборки n на объем генеральной совокупности N.

Фундаментальное значение для практики имеет нахождение среднего и дисперсии признака генеральной совокупности по соответствующим известным выборочным параметрам. Можно показать, что выборочное среднее является несмещенной состоятельной оценкой генерального среднего. В то же время, несмещенной состоятельной оценкой генеральной дисперсии оказывается не выборочная дисперсия , а так называемая «исправленная» выборочная дисперсия, равная .

Таким образом, в качестве оценок генерального среднего и дисперсии в математической статистике принимают выборочное среднее и исправленную выборочную дисперсию.