Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
Математические модели и методы, обладающие высокой степенью абстракции, широко применяются для изучения столь сложного объекта, как экономика на макро и микро уровне и являются естественным, необходимым элементом современной экономической теории.
Использование математики в экономике позволяет:
выделить и формально описать наиболее важные и существенные связи экономических переменных и объектов;
из четко сформулированных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки;
методы математики и статистики позволяют индуктивным путем получать новые знания об объекте: оценивать форму и параметры зависимостей его переменных, в наибольшей степени соответствующие его наблюдениям;
использование языка математики позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.
Теоретические модели являются преимущественно детерминированными моделями, предполагающими жесткие функ- циональные связи между переменными модели, и используются для описания и объяснения наблюдаемых процессов. В то же время статистические данные собираются для построения и обоснования математических моделей, которые носят преимущественно прикладной характер. Они допускают наличие случайных воздействий на исследуемые показатели и используют инструментарий теории вероятностей и математической статистики для их описания. Такие модели принято называть стохастическими.
Специфика использования теории вероятностей в экономике и социальной сфере такова, что анализируемые данные практически никогда не являются экспериментальными, они не являются результатом контролируемого воспроизводимого эксперимента.
Для изучения различных экономических явлений обычно используют их упрощенные формальные описания, называемые экономическими моделями. Примерами экономических моделей являются модели потребительского выбора, модели фирмы, модели экономического роста, модели равновесия на товарных, факторных и финансовых рынках и многие другие. При построении модели выявляются существенные факторы, определяющие исследуемое явление и отбрасывают детали, несущественные для решения поставленной проблемы. По своему определению любая экономическая модель абстрактна и, следовательно, не полна, поскольку, выделяя наиболее существенные факторы, определяющие закономерности функционирования рассматриваемого экономического объекта она абстрагируется от других факторов, которые, несмотря на свою относительную малость, все же в совокупности могут определять не только отклонения в поведении объекта, но и само его поведение. Так, в простейшей модели спроса считается, что величина спроса на какой-либо товар определяется его ценой и доходом потребителя. На самом же деле на величину спроса оказывает также влияние ряд других факторов: вкусы и ожидания потребителей, цены на другие товары, воздействие рекламы, моды и так далее. Обычно предполагают, что все факторы, не учтенные явно в экономической модели, оказывают на объект относительно малое результирующее воздействие в интересующем нас аспекте. Состав учтенных в модели факторов и ее структура могут быть уточнены в ходе совершенствования модели.
Поэтому любое экономическое исследование всегда предполагает объединение теории (экономической модели) и практики (статистических данных). Основным элементом экономического исследования является анализ и построение взаимосвязей экономических переменных. Изучение таких взаимосвязей осложнено тем, что они – особенно в макроэкономике – не являются строгими, функциональными зависимостями, поэтому:
всегда очень трудно выявить все основные факторы, влияющие на данную переменную;
многие такие воздействия являются случайными, то есть содержат случайную составляющую;
экономисты, как правило, располагают ограниченным набором данных статистических наблюдений, которые к тому же содержат различного рода ошибки.
Возникновение теории вероятности, как науки, было обусловлено потребностью практики. Формирование интереса к задачам, связанным с вероятностями, происходило не только в связи с азартными играми в кости и карты. Задачи на вычисление вероятностей ставили начавшее развиваться страховое дело, службы по изучению статистики народонаселения, которые нуждались в теоретически обоснованных методах обработки наблюдений. Таким образом, в начале семнадцатого века, под влиянием возникающих новых экономических отношений и новых научных проблем сформировалась наука, изучающая:
особого рода законы, которым подчиняются случайные величины;
свойства случайных массовых событий, способных многократно повторяться при воспроизведении определенного комплекса условий и т.д.
Традиционные методы теории вероятностей и математической статистики – теория оценивания и проверки гипотез – были развиты для экспериментальных наук, но не для экономики, где, в большинстве случаев, приходиться иметь дело с данными не экспериментальной природы и, как правило, нет возможности получить больше данных, чем уже имеется. Таким образом, эти методы не могут быть применены для анализа экономических данных без необходимой модификации. Методы теории вероятностей и математической статистики (то есть теория обработки и анализа данных), адаптированные к обработке экономических данных лежат в основе эконометрики, которая устанавливает и исследует количественные закономерности и взаимозависимости в экономике. Знание эконометрики позволяет строить экономические модели и оценивать их параметры, проверять гипотезы о свойствах экономических показателей и формах их связи, что, в конечном счете, служит основой для экономического анализа и прогнозирования, создавая возможность для принятия обоснованных экономических решений. Формализация основных особенностей функционирования экономических объектов позволяет оценить возможные последствия воздействия на них и использовать такие оценки в управлении.
- Тема 1. Вероятностные пространства 30
- Тема 2. Основные вероятностные схемы испытаний 60
- Тема 3. Случайные величины 87
- Тема 4. Математическая статистика 140
- Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- Особенности изучения теории вероятностей и математической статистики менеджером
- Краткие сведения
- Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- Основные понятия теории вероятностей
- Случайные события
- Понятие случайного эксперимента
- Пространство элементарных событий
- Наступление события, благоприятствующие исходы
- Совместные (совместимые), несовместные (несовместимые) события
- Достоверное и невозможное события
- Алгебра событий Операции над событиями (сумма, разность, произведение)
- Свойства операций над событиями
- Алгебра и сигма-алгебра событий
- Общее определение вероятности
- Классическое определение вероятности события. Случаи равновероятных исходов
- Статистическое определение вероятности события. Случаи неравновероятных исходов
- Геометрические вероятности
- Аксиоматическое построение теории вероятностей
- , Т.Е. Вероятность достоверного события равна единице;
- Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- Полная группа событий
- Условная вероятность
- Формула умножения вероятностей
- Формула сложения вероятностей
- Независимость событий
- Простейшие свойства вероятностей
- Свойства условных вероятностей
- Формула полной вероятности. Формула Байеса
- Контрольные вопросы к теме №1
- Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- Классическая вероятностная схема
- Правила суммы и произведения
- Схемы выбора. Основные понятия комбинаторики
- Выбор без возвращения, с учетом порядка
- Выбор без возвращения, без учета порядка
- Выбор с возвращением и с учетом порядка
- Выбор с возвращением и без учета порядка
- Урновая схема
- Наивероятнейшее число наступления событий в схеме Бернулли
- Предельные теоремы для схемы Бернулли
- Локальная теорема Муавра–Лапласа
- Интегральная теорема Муавра – Лапласа
- Теорема Пуассона
- Понятие потока событий
- Полиномиальная схема
- Понятие цепи Маркова
- Однородные цепи Маркова
- Равенство Маркова
- Предельные вероятности
- Контрольные вопросы к теме №2
- Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- Непрерывные и дискретные случайные величины
- Закон распределения случайной величины
- Функция распределения случайной величины и ее свойства
- Свойства функции распределения
- Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- Свойства математического ожидания
- Дисперсия случайной величины и ее свойства
- Среднеквадратическое отклонение
- Начальные и центральные моменты
- Основные примеры распределений дискретной случайной величины
- Биномиальное распределение, его математическое ожидание, дисперсия
- Распределение Пуассона
- Геометрическое распределение
- Непрерывные случайные величины Функция и плотность распределения вероятностей
- Числовые характеристики непрерывных случайных величин
- Основные примеры распределений непрерывной случайной величины Равномерное распределение
- Показательное распределение
- Нормальное распределение
- Свойства функции Гаусса
- Центральная предельная теорема
- Вероятность попадания нормальной случайной величины в заданный интервал
- Функция Лапласа и ее свойства
- Вычисление вероятности заданного отклонения. Правило «трех сигм»
- Лекция 4. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двумерной случайной величины
- Свойства совместной функции распределения двумерной случайной величины
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Условное математическое ожидание
- Независимые случайные величины
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Линейная регрессия. Метод наименьших квадратов
- Распределение 2
- Распределение Стьюдента
- Распределение Фишера
- Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- Контрольные вопросы к теме №3
- Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- Выборочный метод и его основные понятия
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин
- Полигон и гистограмма
- Эмпирическая функция распределения и ее свойства
- Свойства эмпирической функции распределения
- Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- Выборочные среднее и дисперсия
- Надежность и доверительный интервал
- Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Проверка статистических гипотез
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки
- Критерий согласия Пирсона о виде распределения
- Элементы теории корреляции
- Выборочные уравнения регрессии
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель
- Обратная модель
- Степенная модель
- Показательная модель
- Цепи Маркова Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода
- Равенство Маркова
- Цепи Маркова с непрерывным временем
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Предельные вероятности
- Контрольные вопросы к теме №4
- Экзаменационные вопросы
- Литература
- Теория вероятностей и математическая статистика
- Технический редактор т.В. Жибуль
- 220007, Г. Минск, ул. Московская, 17.