logo search
теория вероятн

Свойства коэффициента корреляции

  1. Если =1, то , где k и b — константы, k>0.

  2. Если = –1, то , где k<0.

Коэффициент корреляции достигает своих предельных значений –1 и 1 в том и только в том случае, если совместное распределение и все концентрируется на некоторой прямой в плоскости ( , ), то есть между и имеется такая линейная зависимость.

Если <1, то такой линейной зависимости нет. Все же по мере приближения к единице совместное распределение , имеет тенденцию концентрироваться вблизи некоторой прямой линии и величину можно считать мерой близости к полной линейной зависимости между и .

Введем понятие корреляционной зависимости между и .

Две случайные величины называют коррелированными, если их ковариация или коэффициент корреляции отличны от нуля, и некоррелированными, если они равны нулю.

Пусть задан закон совместного распределения двух случайных величин и (как в вышеприведенном примере), и условное математическое ожидание меняется в зависимости от значения . Тогда принято говорить о корреляционной зависимости от . Если условное математическое ожидание есть линейная функция от , то между и имеется линейная корреляционная связь или зависимость.

Как правило, говоря о корреляционной зависимости, имеют в виду линейную корреляционную зависимость. Если имеется в виду нелинейная корреляционная зависимость, то это особо оговаривают.

Можно дать определение корреляционной зависимости двух случайных величин и как связи между тенденциями роста и . Например, между и существует прямая корреляционная зависимость, если с ростом случайная величина имеет тенденцию возрастать. (Это означает, что при больших значениях с большей вероятностью встречаются большие значения ). Если большим значениям с большей вероятностью соответствуют меньшие значения , то есть с ростом случайная величина имеет тенденцию убывать, говорят, что между и существует обратная корреляционная зависимость.

Глубина (или теснота) корреляционной зависимости (или связи) характеризуется коэффициентом . Чем ближе к единице, тем теснее глубина корреляционной зависимости.

Чем ближе зависимость между условным математическим ожиданием и случайной величиной к линейной, и, чем теснее значения группируются около условных математических ожиданий, тем глубже (теснее) корреляционная связь.