Распределение Стьюдента
Многие задачи статистики приводят к случайной величине вида , где и – независимые случайные величины, причем – нормально распределенная случайная величина с параметрами M = 0 и D = 1, а распределена по закону 2 c k степенями свободы.
Закон распределения случайной величины t называется законом распределения Стьюдента с k степенями свободы.
График плотности распределения для закона Стьюдента схематически изображен на рисунке 3. Кривая плотности распределения схожа с аналогичной кривой для нормального распределения.
Таблицы распределения Стьюдента позволяют при данном числе степеней свободы k по вероятности q определить значение tq, для которого выполняется соотношение P(t > tq)=q. Фрагмент такой таблицы представляет собой таблица 2.
Таблица 2
q k | 0,1 | 0,05 | ... | 0,01 | 0,005 | ... |
1 | 6,314 | 12,71 | ... | 63,57 | 318 | ... |
... | ... | ... | ... | ... | ... | ... |
12 | 1,782 | 2,179 | ... | 3,055 | 3,428 | ... |
... | ... | ... | ... | ... | ... | ... |
|
Задача. Найти симметричный интервал, в который случайная величина, распределенная по закону Стьюдента с 12-ю степенями свободы, попадает вероятностью 0,9.
Решение. Очевидны соотношения:
P(–x < t < x) = P(t < x) = 1 – P(t x) = 0,9.
Из последнего равенства следует:
P(t x) = 0,1, (n = 12).
Определяем из таблицы: x=1,782. Нестрогое неравенство в скобках в левой части последней формулы нас не должно смущать, так как мы имеем дело с непрерывной случайной величиной, и вероятность того, что она примет конкретное значение, равна нулю.
Задача. Найти значение x из условия P(t > x) = 0,995 , где t – случайная величина, распределенная по закону Стьюдента с 12-ю степенями свободы.
Решение. На рисунке 4 изображен график плотности распределения Стьюдента с 12-ю степенями свободы. Вероятность того, что случайная величина примет значение из области справа от точки x1 равна 0,995 , следовательно, в область левее этой точки случайная величина попадает с вероятностью 0,005. Чтобы найти x1, рассмотрим две симметричные области, изображенные на рисунке 5. Допустим, что в каждой из этих областей значение случайной величины оказывается с вероятностью 0,005. Тогда получаем: x1= –x, x2=x, причем x определяется из условия P(t>x)=0,01. Из таблицы 2 находим: x=3,055. Теперь можно выписать ответ задачи:
P(t > –3,055) = 0,995.
- Тема 1. Вероятностные пространства 30
- Тема 2. Основные вероятностные схемы испытаний 60
- Тема 3. Случайные величины 87
- Тема 4. Математическая статистика 140
- Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- Особенности изучения теории вероятностей и математической статистики менеджером
- Краткие сведения
- Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- Основные понятия теории вероятностей
- Случайные события
- Понятие случайного эксперимента
- Пространство элементарных событий
- Наступление события, благоприятствующие исходы
- Совместные (совместимые), несовместные (несовместимые) события
- Достоверное и невозможное события
- Алгебра событий Операции над событиями (сумма, разность, произведение)
- Свойства операций над событиями
- Алгебра и сигма-алгебра событий
- Общее определение вероятности
- Классическое определение вероятности события. Случаи равновероятных исходов
- Статистическое определение вероятности события. Случаи неравновероятных исходов
- Геометрические вероятности
- Аксиоматическое построение теории вероятностей
- , Т.Е. Вероятность достоверного события равна единице;
- Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- Полная группа событий
- Условная вероятность
- Формула умножения вероятностей
- Формула сложения вероятностей
- Независимость событий
- Простейшие свойства вероятностей
- Свойства условных вероятностей
- Формула полной вероятности. Формула Байеса
- Контрольные вопросы к теме №1
- Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- Классическая вероятностная схема
- Правила суммы и произведения
- Схемы выбора. Основные понятия комбинаторики
- Выбор без возвращения, с учетом порядка
- Выбор без возвращения, без учета порядка
- Выбор с возвращением и с учетом порядка
- Выбор с возвращением и без учета порядка
- Урновая схема
- Наивероятнейшее число наступления событий в схеме Бернулли
- Предельные теоремы для схемы Бернулли
- Локальная теорема Муавра–Лапласа
- Интегральная теорема Муавра – Лапласа
- Теорема Пуассона
- Понятие потока событий
- Полиномиальная схема
- Понятие цепи Маркова
- Однородные цепи Маркова
- Равенство Маркова
- Предельные вероятности
- Контрольные вопросы к теме №2
- Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- Непрерывные и дискретные случайные величины
- Закон распределения случайной величины
- Функция распределения случайной величины и ее свойства
- Свойства функции распределения
- Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- Свойства математического ожидания
- Дисперсия случайной величины и ее свойства
- Среднеквадратическое отклонение
- Начальные и центральные моменты
- Основные примеры распределений дискретной случайной величины
- Биномиальное распределение, его математическое ожидание, дисперсия
- Распределение Пуассона
- Геометрическое распределение
- Непрерывные случайные величины Функция и плотность распределения вероятностей
- Числовые характеристики непрерывных случайных величин
- Основные примеры распределений непрерывной случайной величины Равномерное распределение
- Показательное распределение
- Нормальное распределение
- Свойства функции Гаусса
- Центральная предельная теорема
- Вероятность попадания нормальной случайной величины в заданный интервал
- Функция Лапласа и ее свойства
- Вычисление вероятности заданного отклонения. Правило «трех сигм»
- Лекция 4. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двумерной случайной величины
- Свойства совместной функции распределения двумерной случайной величины
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Условное математическое ожидание
- Независимые случайные величины
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Линейная регрессия. Метод наименьших квадратов
- Распределение 2
- Распределение Стьюдента
- Распределение Фишера
- Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- Контрольные вопросы к теме №3
- Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- Выборочный метод и его основные понятия
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин
- Полигон и гистограмма
- Эмпирическая функция распределения и ее свойства
- Свойства эмпирической функции распределения
- Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- Выборочные среднее и дисперсия
- Надежность и доверительный интервал
- Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Проверка статистических гипотез
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки
- Критерий согласия Пирсона о виде распределения
- Элементы теории корреляции
- Выборочные уравнения регрессии
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель
- Обратная модель
- Степенная модель
- Показательная модель
- Цепи Маркова Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода
- Равенство Маркова
- Цепи Маркова с непрерывным временем
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Предельные вероятности
- Контрольные вопросы к теме №4
- Экзаменационные вопросы
- Литература
- Теория вероятностей и математическая статистика
- Технический редактор т.В. Жибуль
- 220007, Г. Минск, ул. Московская, 17.