logo search
теория вероятн

Урновая схема

Классическая схема, несмотря на свою ограниченность, пригодна для решения ряда сугубо практических задач, общую схему которых можно охарактеризовать следующим образом: рассмотрим множество элементов, состоящее из двух непересекающихся подмножеств из и элементов. Например, множество шаров, из которых – белые, а – черные. Эти шары находятся в урне, из которой извлекается шаров. Требуется найти вероятность того, что сред этих шаров окажется белых, причем отношение будет близко к , т.е. достоверно ли представление о генеральной совокупности, полученное по выборке. В самом деле, в описанной ситуации каждая выборка не имеет предпочтения по отношению к любой другой, т.е. все они равновозможны.

Обозначим через событие «в выборке объема имеется белых шаров». Число всех возможных выборок объема из множества элементов равно числу сочетаний . Выясним число элементарных исходов благоприятствующих событию : из белых шаров можно выбрать штук способами, а из черных шаров можно выбрать штук способами. Таким образом, число элементарных исходов благоприятствующих событию равно . Следовательно, вероятность того, что сред этих шаров окажется белых, причем отношение будет близко к , равна:

.

Схема независимых испытаний Бернулли

Серия повторных независимых испытаний, в каждом из которых данное событие имеет одну и ту же вероятность , не зависящую от номера испытания, называется схемой Бернулли. Таким образом, в схеме Бернулли для каждого испытания имеются только два исхода: событие (успех), вероятность которого и событие (неудача), вероятность которого .

Рассмотрим задачу: в условиях схемы Бернулли необходимо определить вероятность того, что при проведении независимых испытаний, в испытаниях наступит событие , если вероятность его наступления в каждом испытании равна .

Определим вначале вероятность того, что в первых испытаниях событие наступит, а в остальных испытаниях не наступит. Вероятность такого события можно получить по формуле вероятности произведения независимых событий , где .

Это лишь одна из возможных комбинаций, когда событие произошло только в первых испытаниях. Для определения искомой вероятности нужно перебрать все возможные комбинации. Их число равно числу сочетаний из элементов по , т.е. .

Таким образом, вероятность того, что событие наступит в любых испытаниях, определяется по формуле Бернулли:

.