logo
Курс лекций по математике

73. Теоретико-множественный смысл произведения

Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следо­вать за» и сложении. В школьном курсе математики используется дру­гое определение умножения, оно связано со сложением одинаковых слагаемых. Покажем, что оно вытекает из первого.

Теорема 4. Если о > 1, то произведение чисел а и b равно сумме b слагаемых, каждое из которых равно а.

Доказательство. Обозначим сумму b слагаемых, каждое из которых равно а, через а b. И, кроме того, положим, что а 1 = а. Тогда выражение а°(b + 1) будет означать, что рассматривается сумма b + 1 слагаемого, каждое из которых равно а, т.е. а ( b + 1) = а + а + ... + а + а. Сумму а + а + ... + а + а можно представить в виде

b + 1 слаг.

выражения (а + а + ... + а + а) + а , которое равно а b + а. Значит, операция а b обладает теми же свойствами, что и умножение, определен­ное в аксиоматической теории, а именно, а 1 = а и а ▫(b+1) = а b + а. В силу единственности умножения получаем, что

а b = а b

Итак, если а и b - натуральные числа и b > 1, то произведение а b можно рассматривать как сумму b слагаемых, каждое из которых равно а.

Умножение на I определяется так: а 1 = а.

Если умножение рассматривается на множестве целых неотрица­тельных чисел, то к этим двум случаем надо добавить третий - опре­деление умножения на нуль: а 0 = 0.

Таким образом, получаем следующее определение умножения це­лых неотрицательных чисел.

Определение. Если а, b - целые неотрицательные числа, то произве­дением а b называется число, удовлетворяющее следующим условиям:

1) а b = а + а + ... + а + а, если b > 1;

b слаг.

  1. а b = а, если b = 1;

  2. а b = 0, если b = 0.

Случаю 1) этого определения можно дать теоретико-множествен­ную трактовку. Если множества А₁, А₂, ..., Аb имеют по а элементов каждое, причем никакие два из них не пересекаются, то их объеди­нение А А₂ ... Аb содержит а b элементов.

Таким образом, с теоретико-множественных позиций а b (b > 1) представляет собой число элементов в объединении b множеств, каждое из которых содержит по а элементов и никакие два из них не пересекаются.

а b = n(А А₂ ... Аb), если n(А₁) = n(А₂)=…= n(Аb)= а и множества попарно не пересекаются.

Взаимосвязь умножения натуральных чисел с объединением равночисленных попарно непересекающихся подмножеств позволяет обосновывать выбор действия умножения при решении текстовых задач.

Рассмотрим, например, такую задачу: «На одно пальто пришивают 4 пуговицы. Сколько пуговиц надо пришить на 3 таких пальто?» Выясним, почему она решается при помощи умножения.

В задаче речь идет о трех множествах, и каждом из которых 4 элемента. Требуется узнать число элементов в объединении этих трех множеств.

Если n(А₁) = n(А₂)= n(А₃)= 4 и множества попарно не пересекаются, то n(А А₂ А) = n(А₁) + n(А₂) + n(А₃)= 4+4+4 = 43. Произведение 43 является математической моделью данной задачи. Так как 43 = 12. то получаем ответ на вопрос: на 3 пальто надо пришить 12 пуговиц.

Можно дать другое теоретико-множественное истолкование произведения целых неотрицательных чисел. Оно связано с понятием декартова произведения множеств.

Теорема 5. Пусть А и В - конечные множества. Тогда их декартово произведение также является конечным множеством, причем выполняется равенство:

n(АхВ)= п(А) п(В).

Доказательство. Пусть даны множества А = {а, а, ...,аn}, В = {b, b, ...,bk}, причем k > 1. Тогда множество А х В состоит из пар вида (аi, bj), где 1  iп, 1  jк. Разобьем множество АхВ на такие подмножества А₁, А₂, ... , Аk, что подмножество Аj состоит из пар вида , bj),. bj), ..., (аn, bj). Число таких подмножеств равно к, т.е. числу элементов в множестве В. Каждое множество А] состоит из n пар, и никакие два из этих множеств не содержат одну и ту же пару. Отсюда следует, что число элементов в декартовом произведении АхВ равно сумме к слагаемых, каждое из которых равно n, т.е. произведению чисел n и к. Таким образом, равенство

п(АхВ) = п(А) п(В) доказано при к > I. При к = 1 оно тоже верно, так как в этом случае В содержит один элемент, например, В = {b}, а тогда АхВ состоит из пар вида , b),. b), ..., (аn, b), число которых равно n/ Поскольку п(А) = п, п(В)= 1, то и в этом случае имеем: n(АхВ)= п(А) п(В) = п1.

При к = 0 данное равенство также верно, поскольку В =  и п(Ах) = п(А) п() = п0 = 0.

Из рассмотренной теоремы следует, что с теоретико-множественной точки зрения произведение а b целых неотрицательных чисел есть число элементов в декартовом произведении множеств А и В, таких, что п (А) = а, и п (В) =b.

а b = п(А) п(В) = п(АхВ).

Этот подход к определению умножения позволяет раскрыть теоре­тико-множественный смысл свойств умножения. Например, смысл равенства а b = b а состоит в том, что хотя множества АхВ и ВхА различны, они являются равномощными: каждой паре (а, b) из множе­ства АхВ можно поставить в соответствие единственную пару (b, а) из множества ВхА, и каждая пара из множества ВхА сопоставляема только одной паре из множества АхВ. Значит, п(АхВ) = п (ВхЛ) и потому а b = b .

Аналогично можно раскрыть теоретико-множественный смысл ас­социативного свойства умножения. Множества Ах(ВхС) и (АхВ)хС различны, но они являются равномощными: каждой паре (а, (b, с)) из множества Ах(ВхС) можно поставить в соответствие единственную пару ((а, b), с) из множества (АхВ)хС, и каждая пара из множества (АхВ)хС сопоставляется единственной паре из множества Ах(ВхС). Поэтому п(Ах(ВхС)) = п((АхВ)хС) и следовательно, а(b с) = (а b)с.

Дистрибутивность умножения относительно сложения выводится из равенства А х С)= (А х В) х С), а дистрибутивность умножения относительно вычитания - из равенства Ах(В\С) = (АхВ) \ (А х С).

В начальных курсах математики произведение целых неотрицатель­ных чисел чаще всего определяют через сумму. Скучай а1 = а и а 0 = 0 принимаются по определению.