98. Действительные числа
Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби при измерении длины отрезка.
Пусть х- отрезок, длину которого надо измерить,е- единичный отрезок. Длину отрезках обозначим буквойX, а длину отрезкае- буквойЕ. Пусть отрезокхсостоит изnотрезков, равныхе₁ и отрезках₁, который короче отрезкае(рис. 130), т.е.n∙Е<X< (n+ 1) ∙Е. Числаnиn+ 1 есть приближенные значения длины отрезкахпри единице длиныЕс недостатком и с избытком с точностью до 1.
Рис. 130
Чтобы получить ответ с большей точностью, возьмем отрезок е₁ - десятую часть отрезка е и будем укладывать его в отрезкех₁. При этом возможны два случая.
1) Отрезок е₁уложился в отрезкех₁ точноnраз. Тогда длинаnотрезкахвыражается конечной десятичной дробью:X= (n + n₁\10)∙Е= n, n₁∙Е. Например,X= 3,4∙Е.
2) Отрезок х₁ оказывается состоящим изnотрезков, равныхе₁, и отрезках₂, который короче отрезкае₁. Тогдаn, n₁∙Е<X<n, n₁ n₁′∙Е, гдеn, n₁ и n, n₁ n₁′- приближенные значения длины отрезкахс недостатком и с избытком с точностью до 0,1.
Ясно, что во втором случае процесс измерения длины отрезка х можно продолжать, взяв новый единичный отрезоке₂- сотую часть отрезкае.
На практике этот процесс измерения длины отрезка на каком-то этапе закончится. И тогда результатом измерения длины отрезка будет либо натуральное число, либо конечная десятичная дробь. Если же представить этот процесс измерения длины отрезка в идеале (как и делают в математике), то возможны два исхода:
1)Наk-том шагу процесс измерения окончится. Тогда длина отрезках выразится конечной десятичной дробью видаn, n₁…nk.
2) Описанный процесс измерения длины отрезка хпродолжается бесконечно. Тогда отчет о нем можно представить символомn, n₁…nk..., который называют бесконечной десятичной дробью.
Как убедиться в возможности второго исхода? Для этого достаточно произвести измерение длины такого отрезка, для которого известно, что его длина выражена, например, рациональным числом 5. Если бы оказалось, что в результате измерения длины такого отрезка получается конечная десятичная дробь, то это означало бы, что число 5можно представить в виде конечной десятичной дроби, что невозможно: 5= 5,666....
Итак, при измерении длин отрезков могут получаться бесконечные десятичные дроби. Но всегда ли эти дроби периодические? Ответ на этот вопрос отрицателен: существуют отрезки, длины которых нельзя выразить бесконечной периодической дробью (т.е. положительным рациональным числом) при выбранной единице длины. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.
Теорема. Если единицей длины является длина стороны квадрата, то длина диагонали этого квадрата не может быть выражена положительным рациональным числом.
Доказательство. Пусть длина стороны квадрата выражается числом 1. Предположим противное тому, что надо доказать, т.е., что длина диагонали АС квадрата АВСВ выражается несократимой дробью. Тогда по теореме Пифагора, выполнялось бы равенство
1²+ 1² =. Из него следует, чтоm² = 2n². Значит,m²- четное число, тогда и числоm- четно (квадрат нечетного числа не может быть четным). Итак,m= 2р. Заменив в равенствеm² = 2n²числоmна 2р, получаем, что 4р²=2n², т.е. 2р²=n². Отсюда следует, чтоn²четно, следовательно,n- четное число. Таким образом, числаmиnчетны, значит, дробьможно сократить на 2, что противоречит предположению о ее несократимости. Установленное противоречие доказывает, что если единицей длины является длина стороны квадрата, то длину диагонали этого квадрата нельзя выразить рациональным числом.
Из доказанной теоремы следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной единице длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.
Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональныхчисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные непериодические десятичные дроби - это и есть положительные иррациональные числа.
Мы пришли к понятию положительного иррационального числа через процесс измерения длин отрезков. Но иррациональные числа можно получить и при извлечении корней из некоторых рациональных чисел. Так √2 ,√7, √24 - это иррациональное числа. Иррациональными являются такжеlg5,sin31, числаπ=3,14...,е= 2,7828... и другие.
Множество положительных иррациональных чисел обозначают символом J+.
Рис. 131
Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R+. Таким образом,Q+∪J+ =R+. При помощи кругов Эйлера эти множества изображены на рисунке 131.
Любое положительное действительное число может быть представлено бесконечной десятичной дробью - периодической (если оно является рациональным), либо непериодической (если оно является иррациональным).
Действия над положительными действительными числами сводятся к действиям над положительными рациональными числами.
Сложение и умножение положительных действительных чисел обладает свойствами коммутативности и ассоциативности, а умножения дистрибутивно относительно сложения и вычитания.
С помощью положительных действительных чисел можно выразить результат измерения любой скалярной величины: длины, площади, массы и т.д. Но на практике часто нужно выразить числом не результат измерения величины, а ее изменение. Причем ее изменение может происходить различно - она может увеличиваться, уменьшаться или оставаться неизменной. Поэтому, чтобы выразить изменение величины, кроме положительных действительных чисел нужны иные числа, а для этого необходимо расширить множество R+, присоединив к нему число 0 (нуль) и отрицательные числа.
Объединение множества положительных действительных чисел с множеством отрицательных действительных чисел и нулем есть множество Rвсех действительных чисел.
Сравнение действительных чисел и действия над ними выполняются по правилам, известным нам из школьного курса математики.
Упражнения
1. Опишите процесс измерения длины отрезка, если отчет о нем представляется дробью:
а) 3,46; б) 3,(7); в) 3,2(6).
2. Седьмая часть единичного отрезка укладывается в отрезке а 13 раз. Конечной или бесконечной дробью будет представлена длина этого отрезка? Периодической или непериодической?
3. Дано множество: {7; 8;√8; 35,91; -12,5; -√37; 0; 0,123; 4136}.
Можно ли разбить его на два класса: рациональные и иррациональные?
4. Известно, что любое число можно изобразить точкой на координатной прямой. Исчерпывают ли точки с рациональными координатами всю координатную прямую? А точки с действительными координатами?
- 050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- Глава I. Элементы логики
- § 1. Множества и операции над ними
- 1. Понятие множества и элемента множества
- 2. Способы задания множеств
- 3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- 4. Пересечение множеств
- 5. Объединение множеств
- 6. Свойства пересечения и объединения множеств
- 7. Вычитание множеств. Дополнение множества до универсального
- 8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- 9. Декартово произведение множеств
- 10. Число элементов в объединении и разности конечных множеств
- 11. Число элементов в декартовом произведении конечных множеств
- 12. Основные понятия:
- § 2. Математические понятия
- 3. Способы определения понятий
- 4. Основные выводы
- § 3. Математические предложения
- § 4. Математическое доказательство
- 26. Схемы дедуктивных умозаключений.
- §5. Текстовая задача и процесс ее решения
- 29. Структура текстовой задачи
- 30. Методы и способы решения текстовых задач
- 31. Этапы решения задачи и приемы их выполнения
- 2. Поиск и составление плана решения задачи
- 3. Осуществление плана решения задачи
- 4. Проверка решения задачи
- 5. Моделирование в процессе решения текстовых задач
- Упражнения
- 32. Решение задач «на части»
- Упражнения
- 33. Решение задач на движение
- Упражнения
- 34. Основные выводы.
- §6. Комбинаторные задачи и их решение
- § 7. Алгоритмы и их свойства
- Упражнения
- Упражнения
- Глава II. Элементы алгебры
- § 8. Соответствия между двумя множествами
- 41. Понятие соответствия. Способы задания соответствий
- 2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- 3. Взаимно-однозначные соответствия
- Упражнения
- 42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- 2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- Упражнения
- 43. Основные выводы § 8
- § 9. Числовые функции
- 44. Понятие функции. Способы задания функций
- 2. График функции. Свойство монотонности функции
- Упражнения
- 45. Прямая и обратная пропорциональности
- Упражнения
- 46. Основные выводы § 9
- §10. Отношения на множестве
- 47. Понятие отношения на множестве
- Упражнения
- 48. Свойства отношений
- R рефлексивно на х ↔ х r х для любого х € X.
- R симметрично на х ↔ (х r y →yRx).
- 49. Отношения эквивалентности и порядка
- Упражнения
- 50. Основные выводы § 10
- § 11. Алгебраические операции на множестве
- 51. Понятие алгебраической операции
- Упражнения
- 52. Свойства алгебраических операций
- Упражнения
- 53. Основные выводы § 11
- § 12. Выражения. Уравнения. Неравенства
- 54. Выражения и их тождественные преобразования
- Упражнения
- 55. Числовые равенства и неравенства
- Упражнения
- 56. Уравнения с одной переменной
- 2. Равносильные уравнения. Теоремы о равносильности уравнений
- 3. Решение уравнений с одной переменной
- Упражнения
- 57. Неравенства с одной переменной
- 2. Равносильные неравенства. Теоремы о равносильности неравенств
- 3. Решение неравенств с одной переменной
- Упражнения
- 58. Основные выводы § 12
- Упражнения
- Глава III. Натуральные числа и нуль
- § 13. Из истории возникновения понятия натурального числа
- § 14. Аксиоматическое построение системы натуральных чисел
- 59. Об аксиоматическом способе построения теории
- Упражнения
- 60. Основные понятия и аксиомы. Определение натурального числа
- Упражнения
- 61. Сложение
- 62. Умножение
- 63. Упорядоченность множества натуральных чисел
- Упражнения
- 64. Вычитание
- Упражнения
- 65. Деление
- 66. Множество целых неотрицательных чисел
- Упражнения
- 67. Метод математической индукции
- Упражнения
- 68. Количественные натуральные числа. Счет
- Упражнения
- 69. Основные выводы § 14
- 70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- Упражнения
- Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- 71. Теоретико-множественный смысл суммы
- Упражнения
- 72. Теоретико-множественный смысл разности
- Упражнения
- 73. Теоретико-множественный смысл произведения
- Упражнения
- 74. Теоретико-множественный смысл частного натуральных чисел
- Упражнения
- 75. Основные выводы § 15
- §16. Натуральное число как мера величины
- 76. Понятие положительной скалярной величины и ее измерения
- Упражнения
- 77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- Упражнения
- 78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- 79. Основные выводы § 16
- 80. Позиционные и непозиционные системы счисления
- 81. Запись числа в десятичной системе счисления
- Упражнения
- 82. Алгоритм сложения
- Упражнения
- 83. Алгоритм вычитания
- Упражнения
- 84. Алгоритм умножения
- Упражнения
- 85. Алгоритм деления
- 86. Позиционные системы счисления, отличные от десятичной
- 87. Основные выводы § 17
- § 18. Делимость натуральных чисел
- 88. Отношение делимости и его свойства
- 89. Признаки делимости
- 90. Наименьшее общее кратное и наибольший общий делитель
- 2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- 3. Признак делимости на составное число
- Упражнения
- 91. Простые числа
- 92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- 93. Основные выводы § 18
- 3. Дистрибутивности:
- § 19. О расширении множества натуральных чисел
- 94. Понятие дроби
- Упражнения
- 95. Положительные рациональные числа
- 96. Множество положительных рациональных чисел как расширение
- 97. Запись положительных рациональных чисел в виде десятичных дробей
- 98. Действительные числа
- 99. Основные выводы § 19
- Глава IV. Геометрические фигуры и величины
- § 20. Из истории возникновения и развития геометрии
- 1. Сущность аксиоматического метода в построении теории
- 2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- 3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- § 21. Свойства геометрических фигур на плоскости
- § 22. Построение геометрических фигур
- 1. Элементарные задачи на построение
- 2. Этапы решения задачи на построение
- Упражнения
- 3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- Основные выводы
- §24. Изображение пространственных фигур на плоскости
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- Тетраэдр Куб Октаэдр
- Упражнения
- 3. Шар, цилиндр, конус и их изображение
- Основные выводы
- § 25. Геометрические величины
- 1. Длина отрезка и ее измерение
- 1) Равные отрезки имеют равные длины;
- 2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- Упражнения
- 2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- 1) Равные углы имеют равные величины;
- 2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- Упражнения
- 1) Равные фигуры имеют равные площади;
- 2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Упражнения
- Основные выводы
- 1. Понятие положительной скалярной величины и ее измерение
- 1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- 2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- Заключение
- Список литературы