2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
Выполняя предложенные задания, мы устанавливаем связь (соответствие) между этими множествами. Ее можно представить наглядно, при помощи графов (рис. 67).
Можно задать эти соответствия, перечислив все пары элементов, плодящихся в заданном соответствии:
{(в1,4),(в3,20)};
{(F1,4),( F2,10),(F3,10)};
{(y1, 4), (у2, 11),(y3,4)}.
Рис. 67
Полученные множества показывают, что любое соответствие между двумя множествами X и Y можно рассматривать как множество упорядоченных пар, образованных из их элементов. А так как упорядоченные пары - это элементы декартова произведения, то приходим к следующему определению общего понятия соответствия.
Определение. Соответствием между множествами X и Y называется всякое подмножество декартова произведения этих множеств.
Соответствия принято обозначать буквами Р, S, Т, К и др. ЕслиS-соответствие между элементами множествX иYто, согласно определению,S с Х х У.
Выясним теперь, как задают соответствия между двумя множествами. Поскольку соответствие - это подмножество, то его можно задавать как любое множество, т.е. либо перечислив все пары элементов, находящихся в заданном соответствии, либоуказав характеристическое свойство элементов этого подмножества. Так, соответствие между множествамиX - {1, 2, 4, 6} иУ = {3, 5} можно задать:
при помощи предложения с двумя переменными: а < Ь при условии, чтоа €X, b €Y;
перечислив пары чисел, принадлежащих подмножеству декартова произведения Х х У: {(1,3), (1,5), (2, 3), (2, 5), (4, 5)}. К этому способу задания относят также задание соответствия при помощи графа (рис. 68) и графика (рис. 69).
Нередко, изучая соответствие между множествами X иY, приходится рассматривать и соответствие, ему обратное. Пусть, например, S -соответствие «больше на 2» между множествами X = {4, 5, 8, 10} и Y = {2, 3,6}. Тогда S = {(4,2), (5, 3), (8,6)} и его граф будет таким, как на рисунке 70,а.
Соответствие, обратное данному, - это соответствие «меньше на 2», Оно рассматривается между множествами R и Х, и чтобы его представить наглядно, достаточно на графе соответствия S направление стрелок поменять на противоположное (рис. 70,6). Если соответствие меньше на 2» обозначить S-1, то S-1 = {(2,4), (3,5), (6,8)}.
Условимся предложение «элемент х находится в соответствии S с элементом у» записывать кратко так: хSу. Запись хSу можно рассматривать как обобщение записей конкретных соответствий: x= 2у; х > 3у+1 и др.
- 050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- Глава I. Элементы логики
- § 1. Множества и операции над ними
- 1. Понятие множества и элемента множества
- 2. Способы задания множеств
- 3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- 4. Пересечение множеств
- 5. Объединение множеств
- 6. Свойства пересечения и объединения множеств
- 7. Вычитание множеств. Дополнение множества до универсального
- 8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- 9. Декартово произведение множеств
- 10. Число элементов в объединении и разности конечных множеств
- 11. Число элементов в декартовом произведении конечных множеств
- 12. Основные понятия:
- § 2. Математические понятия
- 3. Способы определения понятий
- 4. Основные выводы
- § 3. Математические предложения
- § 4. Математическое доказательство
- 26. Схемы дедуктивных умозаключений.
- §5. Текстовая задача и процесс ее решения
- 29. Структура текстовой задачи
- 30. Методы и способы решения текстовых задач
- 31. Этапы решения задачи и приемы их выполнения
- 2. Поиск и составление плана решения задачи
- 3. Осуществление плана решения задачи
- 4. Проверка решения задачи
- 5. Моделирование в процессе решения текстовых задач
- Упражнения
- 32. Решение задач «на части»
- Упражнения
- 33. Решение задач на движение
- Упражнения
- 34. Основные выводы.
- §6. Комбинаторные задачи и их решение
- § 7. Алгоритмы и их свойства
- Упражнения
- Упражнения
- Глава II. Элементы алгебры
- § 8. Соответствия между двумя множествами
- 41. Понятие соответствия. Способы задания соответствий
- 2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- 3. Взаимно-однозначные соответствия
- Упражнения
- 42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- 2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- Упражнения
- 43. Основные выводы § 8
- § 9. Числовые функции
- 44. Понятие функции. Способы задания функций
- 2. График функции. Свойство монотонности функции
- Упражнения
- 45. Прямая и обратная пропорциональности
- Упражнения
- 46. Основные выводы § 9
- §10. Отношения на множестве
- 47. Понятие отношения на множестве
- Упражнения
- 48. Свойства отношений
- R рефлексивно на х ↔ х r х для любого х € X.
- R симметрично на х ↔ (х r y →yRx).
- 49. Отношения эквивалентности и порядка
- Упражнения
- 50. Основные выводы § 10
- § 11. Алгебраические операции на множестве
- 51. Понятие алгебраической операции
- Упражнения
- 52. Свойства алгебраических операций
- Упражнения
- 53. Основные выводы § 11
- § 12. Выражения. Уравнения. Неравенства
- 54. Выражения и их тождественные преобразования
- Упражнения
- 55. Числовые равенства и неравенства
- Упражнения
- 56. Уравнения с одной переменной
- 2. Равносильные уравнения. Теоремы о равносильности уравнений
- 3. Решение уравнений с одной переменной
- Упражнения
- 57. Неравенства с одной переменной
- 2. Равносильные неравенства. Теоремы о равносильности неравенств
- 3. Решение неравенств с одной переменной
- Упражнения
- 58. Основные выводы § 12
- Упражнения
- Глава III. Натуральные числа и нуль
- § 13. Из истории возникновения понятия натурального числа
- § 14. Аксиоматическое построение системы натуральных чисел
- 59. Об аксиоматическом способе построения теории
- Упражнения
- 60. Основные понятия и аксиомы. Определение натурального числа
- Упражнения
- 61. Сложение
- 62. Умножение
- 63. Упорядоченность множества натуральных чисел
- Упражнения
- 64. Вычитание
- Упражнения
- 65. Деление
- 66. Множество целых неотрицательных чисел
- Упражнения
- 67. Метод математической индукции
- Упражнения
- 68. Количественные натуральные числа. Счет
- Упражнения
- 69. Основные выводы § 14
- 70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- Упражнения
- Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- 71. Теоретико-множественный смысл суммы
- Упражнения
- 72. Теоретико-множественный смысл разности
- Упражнения
- 73. Теоретико-множественный смысл произведения
- Упражнения
- 74. Теоретико-множественный смысл частного натуральных чисел
- Упражнения
- 75. Основные выводы § 15
- §16. Натуральное число как мера величины
- 76. Понятие положительной скалярной величины и ее измерения
- Упражнения
- 77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- Упражнения
- 78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- 79. Основные выводы § 16
- 80. Позиционные и непозиционные системы счисления
- 81. Запись числа в десятичной системе счисления
- Упражнения
- 82. Алгоритм сложения
- Упражнения
- 83. Алгоритм вычитания
- Упражнения
- 84. Алгоритм умножения
- Упражнения
- 85. Алгоритм деления
- 86. Позиционные системы счисления, отличные от десятичной
- 87. Основные выводы § 17
- § 18. Делимость натуральных чисел
- 88. Отношение делимости и его свойства
- 89. Признаки делимости
- 90. Наименьшее общее кратное и наибольший общий делитель
- 2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- 3. Признак делимости на составное число
- Упражнения
- 91. Простые числа
- 92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- 93. Основные выводы § 18
- 3. Дистрибутивности:
- § 19. О расширении множества натуральных чисел
- 94. Понятие дроби
- Упражнения
- 95. Положительные рациональные числа
- 96. Множество положительных рациональных чисел как расширение
- 97. Запись положительных рациональных чисел в виде десятичных дробей
- 98. Действительные числа
- 99. Основные выводы § 19
- Глава IV. Геометрические фигуры и величины
- § 20. Из истории возникновения и развития геометрии
- 1. Сущность аксиоматического метода в построении теории
- 2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- 3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- § 21. Свойства геометрических фигур на плоскости
- § 22. Построение геометрических фигур
- 1. Элементарные задачи на построение
- 2. Этапы решения задачи на построение
- Упражнения
- 3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- Основные выводы
- §24. Изображение пространственных фигур на плоскости
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- Тетраэдр Куб Октаэдр
- Упражнения
- 3. Шар, цилиндр, конус и их изображение
- Основные выводы
- § 25. Геометрические величины
- 1. Длина отрезка и ее измерение
- 1) Равные отрезки имеют равные длины;
- 2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- Упражнения
- 2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- 1) Равные углы имеют равные величины;
- 2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- Упражнения
- 1) Равные фигуры имеют равные площади;
- 2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Упражнения
- Основные выводы
- 1. Понятие положительной скалярной величины и ее измерение
- 1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- 2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- Заключение
- Список литературы