63. Упорядоченность множества натуральных чисел
Как известно, множество натуральных чисел можно упорядочить при помощи отношения «меньше». Но правила построения аксиоматической теории требуют, чтобы это отношение было не только определено, но и сделано это на основе уже определенных в данной теории понятий. Сделать это можно, определив отношение «меньше» через сложение.
Определение. Число а меньше числа b (а < b) тогда и только тогда, когда существует такое натуральное число с, что а + с = b.
При этих условиях говорят также, что число b больше а и пишут b > а.
Теорема 12. Для любых натуральных чисел а и b имеет место одно и только одно из трех отношений: а = b, а > b, а < b.
Доказательство этой теоремы мы опускаем. Из этой теоремы вытекает, что если
а b, то либо а < b, либо а > b, т.е. отношение «меньше» обладает свойством связанности.
Теорема 13. Если а < b и b < с. то а < с.
Доказательство. Эта теорема выражает свойство транзитивности отношения «меньше».
Так как а < b и b < с. то, по определению отношения «меньше», найдутся такие натуральные числа к и /, что b = а + к и с = b + I. Но тогда с = (а + к) + / и на основания свойства ассоциативности сложения получаем: с = а + (к + /). Поскольку к + I - натуральное число, то, согласно определению «меньше», а < с.
Теорема 14. Если а < b, то неверно, что b < а. Доказательство. Эта теорема выражает свойство антисимметричности отношения «меньше».
Докажем сначала, что ни для одного натурального числа а не вы-!>!•■• )ея отношение а < а. Предположим противное, т.е. что а < а имеет место. Тогда, по определению отношения «меньше», найдется такое натуральное число с, что а + с = а, а это противоречит теореме 6.
Докажем теперь, что если а < b, то неверно, что b < а. Предположим противное, т.е. что если а < b, то b < а выполняется. Но из этих равенств по теореме 12 имеем а < а, что невозможно.
Так как определенное нами отношение «меньше» антисимметрично и транзитивно и обладает свойством связанности, то оно является отношением линейного порядка, а множество натуральных чисел линейно упорядоченным множеством.
Из определения «меньше» и его свойств можно вывести известные свойства множества натуральных чисел.
Теорема 15. Из всех натуральных чисел единица является наименьшим числом, т.е. I < а для любого натурального числа а1.
Доказательство . Пусть а - любое натуральное число. Тогда возможны два случая: а = 1 и а 1. Если а = 1, то существует натуральное число b, за которым следует а: а = b ' = b + I = 1 + b , т.е., по определению отношения «меньше», 1 < а. Следовательно, любое натуральное равно 1 либо больше 1. Или, единица является наименьшим натуральным числом.
Отношение «меньше» связано со сложением и умножением чисел свойствами монотонности.
Теорема 16.
а = b => а + с = b + с и а с = b с;
а < b => а + с < b + с и ас < bс;
а > b => а + с > b + с и ас > bс.
Доказательство. 1) Справедливость этого утверждения вытекает из единственности сложения и умножения.
Если а < b, то существует такое натуральное число k, что а + k = b. Тогда b + с = (а + к) + с = а + (к + с) = а + (с + к) = (а + с) + к. Равенство b + с = (а + с) + к означает, что а + с < b + с.
Точно так же доказывается, что а < b => ас < bс.
Доказывается аналогично.
Теорема 17 (обратная теореме 16).
а + с = Ь + с или ас ~ Ьс- а = Ь
а + с < Ь + с или ас < Ьс а < Ь:
а + с > Ь + с или ас > Ьс а > Ь.
Доказательство. Докажем, например, что из ас < bс следует а < b Предположим противное, т.е. что заключение теоремы не выполняется. Тогда не может быть, что а = b. так как тогда бы выполнялось равенство ас = bс (теорема 16); не может быть и а > b, так как тогда бы ас > bс (теорема !6). Поэтому, согласно теореме 12, а < b.
Из теорем 16 и 17 можно вывести известные правила почленного сложения и умножения неравенств. Мы их опускаем.
Теорема 18. Для любых натуральных чисел а и b; существует такое натуральное число n, что п b > а.
Д о к а з а т е л ь с т в о. Для любого а найдется такое число п, что п > а. Для этого достаточно взять п = а + 1. Перемножая почленно неравенства п > а и b > 1, получаем пb > а.
Из рассмотренных свойств отношения «меньше» вытекают важные особенности множества натуральных чисел, которые мы приводим без доказательства.
Ни для одного натурального числа а не существует такого натурального числа п, что а < п < а + 1. Это свойство называется свойством дискретности множества натуральных чисел, а числа а и а + 1 называют соседними.
Любое непустое подмножество натуральных чисел содержит наименьшее число.
Если М - непустое подмножество множества натуральных чисел и существует такое число b, что для всех чисел х из М выполняется не равенство х < b, то в множестве М есть наибольшее число.
Проиллюстрируем свойства 2 и 3 на примере. Пусть М - множество двузначных чисел. Так как М есть подмножество натуральных чисел и для всех чисел этого множества выполняется неравенство х < 100, то в множестве М есть наибольшее число 99. Наименьшее число, содержащееся в данном множестве М, - число 10.
Таким образом, отношение «меньше» позволило рассмотреть (и в ряде случаев доказать) значительное число свойств множества натуральных чисел. В частности, оно является линейно упорядоченным, дискретным, в нем есть наименьшее число 1.
С отношением «меньше» («больше») для натуральных чисел младшие школьники знакомятся в самом начале обучения. И часто, наряду с его теоретико-множественной трактовкой, неявно используется определение, данное нами в рамках аксиоматической теории. Например, учащиеся могут объяснить, что 9 > 7 так как 9 - это 7+2. Нередко и неявное использование свойств монотонности сложения и умножения. Например, дети объясняют, что «6 + 2 < 6 + 3, так как 2 < 3».
- 050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- Глава I. Элементы логики
- § 1. Множества и операции над ними
- 1. Понятие множества и элемента множества
- 2. Способы задания множеств
- 3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- 4. Пересечение множеств
- 5. Объединение множеств
- 6. Свойства пересечения и объединения множеств
- 7. Вычитание множеств. Дополнение множества до универсального
- 8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- 9. Декартово произведение множеств
- 10. Число элементов в объединении и разности конечных множеств
- 11. Число элементов в декартовом произведении конечных множеств
- 12. Основные понятия:
- § 2. Математические понятия
- 3. Способы определения понятий
- 4. Основные выводы
- § 3. Математические предложения
- § 4. Математическое доказательство
- 26. Схемы дедуктивных умозаключений.
- §5. Текстовая задача и процесс ее решения
- 29. Структура текстовой задачи
- 30. Методы и способы решения текстовых задач
- 31. Этапы решения задачи и приемы их выполнения
- 2. Поиск и составление плана решения задачи
- 3. Осуществление плана решения задачи
- 4. Проверка решения задачи
- 5. Моделирование в процессе решения текстовых задач
- Упражнения
- 32. Решение задач «на части»
- Упражнения
- 33. Решение задач на движение
- Упражнения
- 34. Основные выводы.
- §6. Комбинаторные задачи и их решение
- § 7. Алгоритмы и их свойства
- Упражнения
- Упражнения
- Глава II. Элементы алгебры
- § 8. Соответствия между двумя множествами
- 41. Понятие соответствия. Способы задания соответствий
- 2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- 3. Взаимно-однозначные соответствия
- Упражнения
- 42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- 2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- Упражнения
- 43. Основные выводы § 8
- § 9. Числовые функции
- 44. Понятие функции. Способы задания функций
- 2. График функции. Свойство монотонности функции
- Упражнения
- 45. Прямая и обратная пропорциональности
- Упражнения
- 46. Основные выводы § 9
- §10. Отношения на множестве
- 47. Понятие отношения на множестве
- Упражнения
- 48. Свойства отношений
- R рефлексивно на х ↔ х r х для любого х € X.
- R симметрично на х ↔ (х r y →yRx).
- 49. Отношения эквивалентности и порядка
- Упражнения
- 50. Основные выводы § 10
- § 11. Алгебраические операции на множестве
- 51. Понятие алгебраической операции
- Упражнения
- 52. Свойства алгебраических операций
- Упражнения
- 53. Основные выводы § 11
- § 12. Выражения. Уравнения. Неравенства
- 54. Выражения и их тождественные преобразования
- Упражнения
- 55. Числовые равенства и неравенства
- Упражнения
- 56. Уравнения с одной переменной
- 2. Равносильные уравнения. Теоремы о равносильности уравнений
- 3. Решение уравнений с одной переменной
- Упражнения
- 57. Неравенства с одной переменной
- 2. Равносильные неравенства. Теоремы о равносильности неравенств
- 3. Решение неравенств с одной переменной
- Упражнения
- 58. Основные выводы § 12
- Упражнения
- Глава III. Натуральные числа и нуль
- § 13. Из истории возникновения понятия натурального числа
- § 14. Аксиоматическое построение системы натуральных чисел
- 59. Об аксиоматическом способе построения теории
- Упражнения
- 60. Основные понятия и аксиомы. Определение натурального числа
- Упражнения
- 61. Сложение
- 62. Умножение
- 63. Упорядоченность множества натуральных чисел
- Упражнения
- 64. Вычитание
- Упражнения
- 65. Деление
- 66. Множество целых неотрицательных чисел
- Упражнения
- 67. Метод математической индукции
- Упражнения
- 68. Количественные натуральные числа. Счет
- Упражнения
- 69. Основные выводы § 14
- 70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- Упражнения
- Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- 71. Теоретико-множественный смысл суммы
- Упражнения
- 72. Теоретико-множественный смысл разности
- Упражнения
- 73. Теоретико-множественный смысл произведения
- Упражнения
- 74. Теоретико-множественный смысл частного натуральных чисел
- Упражнения
- 75. Основные выводы § 15
- §16. Натуральное число как мера величины
- 76. Понятие положительной скалярной величины и ее измерения
- Упражнения
- 77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- Упражнения
- 78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- 79. Основные выводы § 16
- 80. Позиционные и непозиционные системы счисления
- 81. Запись числа в десятичной системе счисления
- Упражнения
- 82. Алгоритм сложения
- Упражнения
- 83. Алгоритм вычитания
- Упражнения
- 84. Алгоритм умножения
- Упражнения
- 85. Алгоритм деления
- 86. Позиционные системы счисления, отличные от десятичной
- 87. Основные выводы § 17
- § 18. Делимость натуральных чисел
- 88. Отношение делимости и его свойства
- 89. Признаки делимости
- 90. Наименьшее общее кратное и наибольший общий делитель
- 2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- 3. Признак делимости на составное число
- Упражнения
- 91. Простые числа
- 92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- 93. Основные выводы § 18
- 3. Дистрибутивности:
- § 19. О расширении множества натуральных чисел
- 94. Понятие дроби
- Упражнения
- 95. Положительные рациональные числа
- 96. Множество положительных рациональных чисел как расширение
- 97. Запись положительных рациональных чисел в виде десятичных дробей
- 98. Действительные числа
- 99. Основные выводы § 19
- Глава IV. Геометрические фигуры и величины
- § 20. Из истории возникновения и развития геометрии
- 1. Сущность аксиоматического метода в построении теории
- 2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- 3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- § 21. Свойства геометрических фигур на плоскости
- § 22. Построение геометрических фигур
- 1. Элементарные задачи на построение
- 2. Этапы решения задачи на построение
- Упражнения
- 3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- Основные выводы
- §24. Изображение пространственных фигур на плоскости
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- Тетраэдр Куб Октаэдр
- Упражнения
- 3. Шар, цилиндр, конус и их изображение
- Основные выводы
- § 25. Геометрические величины
- 1. Длина отрезка и ее измерение
- 1) Равные отрезки имеют равные длины;
- 2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- Упражнения
- 2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- 1) Равные углы имеют равные величины;
- 2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- Упражнения
- 1) Равные фигуры имеют равные площади;
- 2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Упражнения
- Основные выводы
- 1. Понятие положительной скалярной величины и ее измерение
- 1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- 2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- Заключение
- Список литературы