logo
Курс лекций по математике

54. Выражения и их тождественные преобразования

Как известно, записи 3 + 7, 24:8, 3•2-4, (25 + 3)- •2- 17 называются числовыми выражениями. Они образуются из чисел, знаков действий и скобок. Если выполнить все действия, указанные в выражении, полу­чим число, которое называется значением числового выражения. Так, значение числового выражения 3•2-4 равно 2.

Существуют числовые выражения, значения которых нельзя найти. Про такие выражения говорят, что они не имеют смысла. Например, выражение 8: (4 - 4) смысла не имеет, поскольку его значение найти нельзя: 4 - 4 = 0, а деление на нуль невозможно. Не имеет смысла и выражение 7-9, если рассматривать его на множестве натуральных чисел, так как на этом множестве значения выражения 7-9 найти нельзя.

Рассмотрим запись 2a + 3. Она образована из чисел, знаков дейст­вий и буквы а. Если вместо а подставлять числа, то будут получаться различные числовые выражения:

если a = 7, то 2•7 + 3;

если a = 0, то 2•0 + 3;

если а = -4, то 2• (-4) + 3.

В записи 2а + 3 такая буква а называется переменной, а сама запись 2а + 3 - выражением с переменной.

Переменную в математике, как правило, обозначают любой строч­ной буквой латинского алфавита. В начальной школе для обозначе­ния переменной кроме букв используются другие знаки, например ¨. Тогда запись выражения с переменной имеет вид: 2-¨ + 3.

Каждому выражению с переменной соответствует множество чисел, при подстановке которых получается числовое выражение, имеющее смысл. Это множество называют областью определения выражения. Например, область определения выражения 5:(х - 7) состоит из всех действительных чисел, кроме числа 7, так как при х =• 1 выражение 5: (7 - 7) смысла не имеет.

В математике рассматривают выражения, содержащие одну, две и больше переменных. Например, + 3 - это выражение с одной пере­менной, а (Зх + 8yz - это выражение с тремя переменными. Чтобы из выражения с тремя переменными получить числовое выражение, надо вместо каждой переменной подставить числа, принадлежащие области определения выражения,

Итак, мы выяснили, как образуются из алфавита математического языка числовые выражения и выражения с переменными. Если про­вести аналогию с русским языком, то выражения - это слова матема­тического языка.

Но используя алфавит математического языка, можно образовать и такие, например, записи: (3 + 2)) - ·12 или -у:+)8, которые нельзя назвать ни числовым выражением, ни выражением с переменной. Эти примеры свидетельствуют о том, что описание - из каких знаков алфавита математического языка образуются выражения число­вые и с переменными, не является определением этих понятий. Да­дим определение числового выражения (выражение с переменными определяется аналогично).

Определение. Если f и g - числовые выражения, то (f) + (g), (f)-(g), (f) ·(g), (f):(g) - числовые выражения. Считают, что каждое чис­ло является числовым выражением.

Если точно следовать этому определению, то пришлось бы писать слишком много скобок, например, (7) + (5) или (6):(2). Для сокращения записи условились не писать скобки, если несколько выражений скла­дываются или вычитаются, причем эти операции выполняются слева направо. Точно так же не пишут скобок и тогда, когда перемножаются или делятся несколько чисел, причем эти операции выполняются по порядку слева направо. Например, пишут так: 37-12 + 62-17 + 13 или 120:15·7:12.

Кроме того, условились сначала выполнять действия второй ступени (умножение и деление), а затем действия первой ступени (сложение и вычитание). Поэтому выражение (12·4:3) + (5·8:2·7) записывают так: 12·4:3 + 5·8:2·7.

Задача. Найти значение выражения 3х(х- 2) + 4(х-2) при х = 6.

Решение.

1 способ. Подставим число 6 вместо переменной в данное выра­жение: 3·6·(6 - 2) + 4·(6 - 2). Чтобы найти значение полученного чи­слового выражения, выполним все указанные действия:

3·6·(6-2) + 4·(6-2) = 18·4 + 4·4 = 72 + 16 = 88.

Следовательно, при x = 6 значение выражения 3х(х-2) + 4(х-2) равно 88.

2 способ. Прежде чем подставлять число 6 в данное выражение, упростим его: 3х(х - 2) + 4(х - 2) = (х - 2)(3х + 4). И затем, подста­вив в полученное выражение вместо х число 6, выполним действия: (6- 2)·(3·6 + 4) = 4·(18 + 4) = 4·22 = 88.

Тождественные преобразования выражений

Обратим внимание на следующее: и при первом способе решения задачи, и при втором мы одно выражение заменяли другим. Напри­мер, выражение 18·4 + 4·4 заменяли выражением 72+16, а выраже­ние 3х(х-2) + 4(х-2) - выражением (х - 2)(3х + 4), причем эти заме­ны привели к одному и тому же результату. В математике, описывая решение данной задачи, говорят, что мы выполняли тождественные преобразования выражений.

Определение. Два выражения называются тождественно равными, если при любых значениях переменных из области определения выра­жений их соответственные значения равны.

Примером тождественно равных выражений могут служить выра­жения 5(х + 2) и 5х + 10, поскольку при любых действительных зна­чениях д: их значения равны.

Если два тождественно равных на некотором множестве выраже­ния соединить знаком равенства, то получим предложение, которое называют тождеством на этом множестве.

Например, 5(х + 2) = 5х + 10-тождество на множестве действи­тельных чисел, потому что для всех действительных чисел значе­ния выражения 5(х + 2) и 5х + 10 совпадают. Используя обозначе­ние квантора общности, это тождество можно записать так: (V хR) 5(х + 2) = + 10. Тождествами считают и верные числовые ра­венства.

Замена выражения другим, тождественно равным ему на некото­ром множестве, называется тождественным преобразованием данного выражения на этом множестве.

Так, заменив выражение 5(х + 2) на тождественно равное ему вы­ражение 5х + 10, мы выполнили тождественное преобразование пер­вого выражения. Но как, имея два выражения, узнать, являются они тождественно равными или не являются? Находить соответствующие значения выражений, подставляя конкретные числа вместо перемен­ных? Долго и не всегда возможно. Но тогда каковы те правила, кото­рыми надо руководствоваться, выполняя тождественные преобразо­вания выражений? Этих правил много, среди них - свойства алгеб­раических операций.

Приведем пример тождественных преобразований выражения.