3. Решение уравнений с одной переменной
Решим уравнение 1- x/3 = x/6, x € R и обоснуем все преобразования, которые мы будем выполнять в процессе решения.
Преобразования | Обоснование преобразования |
| Выполнили тождественное преобразование выражения в левой части уравнения. |
| Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному. |
3. Выражение -2х переносим в правую часть уравнения с противоположным знаком: 6 = х+2х. | Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному. |
4. Приводим подобные члены в правой части уравнения: 6 = 3х. | Выполнили тождественное преобразование выражения. |
5. Разделим обе части уравнения на 3: х= 2. | Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному |
Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.
Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.
Рассмотрим, например, уравнение х(х - 1) = 2х, х € R. Разделим обе части на х, получим уравнение х - 1 = 2, откуда х = 3, т. е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0·(0 - 1) = 2·0. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х, т.е. умножили на выражение1/x , но при х = О оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.
Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое его решение. Перенесем выражение 2х из правой части в левую: х(х - 1) - 2х = 0. Вынесем в левой части уравнения за скобки х и приведем подобные члены: х(х - 3) = 0. Произведение двух множителей равно нулю в том и только в том случае, когда хотя бы один из них равен нулю, поэтому x= 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.
В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х·9):24 = 3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х ·9 = 24·3, или х·9 = 72.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72:9, или х = 8, следовательно, корнем данного уравнения является число 8.
- 050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- Глава I. Элементы логики
- § 1. Множества и операции над ними
- 1. Понятие множества и элемента множества
- 2. Способы задания множеств
- 3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- 4. Пересечение множеств
- 5. Объединение множеств
- 6. Свойства пересечения и объединения множеств
- 7. Вычитание множеств. Дополнение множества до универсального
- 8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- 9. Декартово произведение множеств
- 10. Число элементов в объединении и разности конечных множеств
- 11. Число элементов в декартовом произведении конечных множеств
- 12. Основные понятия:
- § 2. Математические понятия
- 3. Способы определения понятий
- 4. Основные выводы
- § 3. Математические предложения
- § 4. Математическое доказательство
- 26. Схемы дедуктивных умозаключений.
- §5. Текстовая задача и процесс ее решения
- 29. Структура текстовой задачи
- 30. Методы и способы решения текстовых задач
- 31. Этапы решения задачи и приемы их выполнения
- 2. Поиск и составление плана решения задачи
- 3. Осуществление плана решения задачи
- 4. Проверка решения задачи
- 5. Моделирование в процессе решения текстовых задач
- Упражнения
- 32. Решение задач «на части»
- Упражнения
- 33. Решение задач на движение
- Упражнения
- 34. Основные выводы.
- §6. Комбинаторные задачи и их решение
- § 7. Алгоритмы и их свойства
- Упражнения
- Упражнения
- Глава II. Элементы алгебры
- § 8. Соответствия между двумя множествами
- 41. Понятие соответствия. Способы задания соответствий
- 2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- 3. Взаимно-однозначные соответствия
- Упражнения
- 42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- 2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- Упражнения
- 43. Основные выводы § 8
- § 9. Числовые функции
- 44. Понятие функции. Способы задания функций
- 2. График функции. Свойство монотонности функции
- Упражнения
- 45. Прямая и обратная пропорциональности
- Упражнения
- 46. Основные выводы § 9
- §10. Отношения на множестве
- 47. Понятие отношения на множестве
- Упражнения
- 48. Свойства отношений
- R рефлексивно на х ↔ х r х для любого х € X.
- R симметрично на х ↔ (х r y →yRx).
- 49. Отношения эквивалентности и порядка
- Упражнения
- 50. Основные выводы § 10
- § 11. Алгебраические операции на множестве
- 51. Понятие алгебраической операции
- Упражнения
- 52. Свойства алгебраических операций
- Упражнения
- 53. Основные выводы § 11
- § 12. Выражения. Уравнения. Неравенства
- 54. Выражения и их тождественные преобразования
- Упражнения
- 55. Числовые равенства и неравенства
- Упражнения
- 56. Уравнения с одной переменной
- 2. Равносильные уравнения. Теоремы о равносильности уравнений
- 3. Решение уравнений с одной переменной
- Упражнения
- 57. Неравенства с одной переменной
- 2. Равносильные неравенства. Теоремы о равносильности неравенств
- 3. Решение неравенств с одной переменной
- Упражнения
- 58. Основные выводы § 12
- Упражнения
- Глава III. Натуральные числа и нуль
- § 13. Из истории возникновения понятия натурального числа
- § 14. Аксиоматическое построение системы натуральных чисел
- 59. Об аксиоматическом способе построения теории
- Упражнения
- 60. Основные понятия и аксиомы. Определение натурального числа
- Упражнения
- 61. Сложение
- 62. Умножение
- 63. Упорядоченность множества натуральных чисел
- Упражнения
- 64. Вычитание
- Упражнения
- 65. Деление
- 66. Множество целых неотрицательных чисел
- Упражнения
- 67. Метод математической индукции
- Упражнения
- 68. Количественные натуральные числа. Счет
- Упражнения
- 69. Основные выводы § 14
- 70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- Упражнения
- Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- 71. Теоретико-множественный смысл суммы
- Упражнения
- 72. Теоретико-множественный смысл разности
- Упражнения
- 73. Теоретико-множественный смысл произведения
- Упражнения
- 74. Теоретико-множественный смысл частного натуральных чисел
- Упражнения
- 75. Основные выводы § 15
- §16. Натуральное число как мера величины
- 76. Понятие положительной скалярной величины и ее измерения
- Упражнения
- 77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- Упражнения
- 78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- 79. Основные выводы § 16
- 80. Позиционные и непозиционные системы счисления
- 81. Запись числа в десятичной системе счисления
- Упражнения
- 82. Алгоритм сложения
- Упражнения
- 83. Алгоритм вычитания
- Упражнения
- 84. Алгоритм умножения
- Упражнения
- 85. Алгоритм деления
- 86. Позиционные системы счисления, отличные от десятичной
- 87. Основные выводы § 17
- § 18. Делимость натуральных чисел
- 88. Отношение делимости и его свойства
- 89. Признаки делимости
- 90. Наименьшее общее кратное и наибольший общий делитель
- 2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- 3. Признак делимости на составное число
- Упражнения
- 91. Простые числа
- 92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- 93. Основные выводы § 18
- 3. Дистрибутивности:
- § 19. О расширении множества натуральных чисел
- 94. Понятие дроби
- Упражнения
- 95. Положительные рациональные числа
- 96. Множество положительных рациональных чисел как расширение
- 97. Запись положительных рациональных чисел в виде десятичных дробей
- 98. Действительные числа
- 99. Основные выводы § 19
- Глава IV. Геометрические фигуры и величины
- § 20. Из истории возникновения и развития геометрии
- 1. Сущность аксиоматического метода в построении теории
- 2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- 3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- § 21. Свойства геометрических фигур на плоскости
- § 22. Построение геометрических фигур
- 1. Элементарные задачи на построение
- 2. Этапы решения задачи на построение
- Упражнения
- 3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- Основные выводы
- §24. Изображение пространственных фигур на плоскости
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- Тетраэдр Куб Октаэдр
- Упражнения
- 3. Шар, цилиндр, конус и их изображение
- Основные выводы
- § 25. Геометрические величины
- 1. Длина отрезка и ее измерение
- 1) Равные отрезки имеют равные длины;
- 2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- Упражнения
- 2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- 1) Равные углы имеют равные величины;
- 2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- Упражнения
- 1) Равные фигуры имеют равные площади;
- 2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Упражнения
- Основные выводы
- 1. Понятие положительной скалярной величины и ее измерение
- 1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- 2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- Заключение
- Список литературы