logo
Курс лекций по математике

57. Неравенства с одной переменной

Предложения 2х + 7 > 10-х, х2+7х < 2,(х + 2)(2х-3)> 0 называют неравенствами с одной переменной.

В общем виде это понятие определяют так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) > g(х) или f(х) < g(х) называется неравенством с одной переменной. Мно­жество X называется областью его определения.

Значение переменной x из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решени­ем. Решить неравенство - это значит найти множество его решений.

Так, решением неравенства 2 x + 7 > 10 -х, х R является число x = 5, так как 2·5 + 7 > 10 - 5 - истинное числовое неравенство. А множест­во его решений - это промежуток (1, ∞), который находят, выполняя преобразование неравенства: 2 x + 7 > 10- x => 3 x > 3 => x >1.