3.5.1. Лекционный курс — 54 часа
Лекция №1
Понятия об основных алгебраических структурах. Алгебры, подалгебры. Гомоморфизмы и изоморфизмы алгебр.
Лекция №2
Алгебры с одной бинарной алгебраической операцией. Группа, аксиомы группы. Мультипликативная и аддитивная форма записи. Группы конечные и бесконечные. Подгруппа. Достаточные условия подгруппы.
Лекция №3
Кольцо, поле, линейное пространство. Арифметическое n- мерное векторное пространство. Линейная зависимость и независимость системы векторов. Базис пространства.
Лекция №4
Алгебры матриц. Матрицы типа (nm) и квадратные матрицы. Операции над матрицами. Свойства операций. Группа, кольцо и линейное пространство матриц.
Лекция №5
Элементарные преобразования матриц. Ранг матрицы. Элементарные матрицы. Обратимые матрицы. Условия обра-тимости матрицы. Алгоритм нахождения обратной матрицы. Решение матричных уравнений.
Лекция №6
Перестановки и подстановки. Четные и нечетные подстановки. Конечная группа подстановок и ее знакопеременная подгруппа.
Лекция №7
Определитель квадратной матрицы. Основные свойства определителей. Миноры и алгебраические дополнения. Разложение определителя по элементам строки или столбца. Определитель произведения матриц. Способы вычисления определителя.
Лекция №8
Системы линейных уравнений. Совместные и несовместные, определенные и неопределенные системы. Следствия системы линейных уравнений. Равносильные системы линейных урав-нений и элементарные преобразования системы. Критерий совместности системы линейных уравнений.
Лекция №9
Методы решения систем линейных уравнений: метод последовательного исключения неизвестных (метод Гаусса); запись и решение системы n линейных уравнений с n неизвестными в матричной форме (матричный метод); правило Крамера.
Лекция №10
Однородные системы линейных уравнений. Пространство решений однородных систем линейных уравнений. Фундаментальный набор решений (базис пространства) однородных систем линейных уравнений. Связь между реше-ниями неоднородной линейной системы и ассоциированной с ней однородной системы.
Лекция №11
Принцип расширения в алгебре. Причины, обуславливающие расширения поля действительных чисел до поля комплексных чисел. Построение поля комплексных чисел. Плоскость комплексных чисел. Геометрическое представление комплексных чисел.
Лекция №12
Алгебраическая форма комплексного числа. Сопряженные числа. Действия над комплексными числами в алгебраической форме: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня квадратного из комплексного числа.
Лекция №13
Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме.
Лекция №14
Кольцо целых чисел Z. Отношение делимости в кольце Z. Свойства отношения делимости в кольце Z. Кольцо классов вычетов по модулю m. Деление с остатком в кольце Z. Теорема о делении с остатком.
Лекция №15
Наибольший общий делитель целых чисел и его свойства. Способы нахождения наибольшего общего делителя. Алгоритм Евклида. Линейное представление наибольшего общего делителя.
Лекция №16
Взаимно простые числа и их свойства. Наименьшее общее кратное целых чисел и его свойства. Способы нахождения наименьшего общего кратного.
Лекция №17
Простые и составные числа. Свойства простых чисел. Бесконечность множества простых чисел. Основная теорема арифметики и следствия из нее.
Лекция №18
Построение кольца многочленов P[x] от одной переменной над полем. Линейное пространство многочленов от одной переменной. Свойства степеней многочленов.
Лекция №19
Отношение делимости в кольце P[x] . Свойства отношения делимости в кольце P[x]. Деление с остатком в кольце P[x]. Теорема о делении с остатком.
Лекция №20
Наибольший общий делитель многочленов и его свойства. Способы нахождения наибольшего общего делителя. Алгоритм Евклида. Линейное представление наибольшего общего делителя.
Yandex.RTB R-A-252273-3- Алгебра
- Оглавление
- 1. Квалификационная характеристика бакалавра
- 2. Набор компетенций бакалавра
- 3. Рабочая программа
- 3.1. Цели и задачи дисциплины
- 3.2. Обязательные требования к минимуму содержания дисциплины
- 3.3. Распределение часов
- 3.4. Технологическая карта учебного курса «Алгебра»
- 3.5.Содержание дисциплины
- 3.5.1. Лекционный курс — 54 часа
- Лекция №21 Взаимно простые многочлены и их свойства. Наименьшее общее кратное многочленов и его свойства. Способы нахождения наименьшего общего кратного.
- 3.5.2. Практические занятия — 54 часа
- Практическое занятие №6 Перестановки и подстановки. Четные и нечетные подстановки. Определители второго и третьего порядков.
- Практическое занятие №12 Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме.
- 3.5.3. Самостоятельная работа — 40 часов
- 3.5.4. Темы курсовых работ
- 4. Вопросы к зачету и экзамену
- 5. ЛекцИи по алгебре
- Глава 1. Понятия об основных алгебраических структурах.
- §1. Алгебры. Подалгебры. Гомоморфизмы алгебр.
- §2. Группа. Аксиомы группы.
- §3. Подгруппа. Достаточные условия подгруппы.
- §4. Кольцо, поле, линейное пространство.
- Глава 2. Матрицы и определители.
- §1.Матрицы. Группа и кольцо матриц.
- §2. Определители, их свойства.
- Глава 3. Системы линейных уравнений, методы их решения.
- Глава 4. Комплексные числа.
- Глава 5. Теория делимости в кольце z.
- §1. Отношение делимости в z и его свойства.
- §2.Нод(а, b), hok(a, b). Алгоритм Евклида.
- §3. Взаимно простые числа и их свойства.
- §4. Нок целых чисел и его свойства.
- §5. Простые числа и их свойства.
- Глава 6. Теория делимости в кольце р[х].
- §1. Построение кольца р[х].
- §2. Отношение делимости в кольце р[х] и его свойства.
- Свойства отношения делимости в кольце р[X].
- §3. Деление с остатком в кольце p[X].
- §4. Приводимые и неприводимые многочлены в кольце р[х].
- §5. Методы нахождения корней многочлена n - ой степени.
- 6. Практикум по алгебре Практическое занятие №1. Алгебры, подалгебры, гомоморфизмы алгебр.
- Практическое занятие №2. Группа, аксиомы группы. Подгруппа. Достаточные условия подгруппы.
- Практическое занятие №3. Кольцо, поле, линейное пространство.
- Практическое занятие №4. Операции над матрицами. Свойства операций. Группа, кольцо и линейное пространство матриц.
- Практическое занятие №5.
- Практическое занятие №6
- Практическое занятие №12
- Практическое занятие №14
- Практическое занятие №15
- 197, 443, 739, 447, 729, 809
- Практическое занятие №17 Отношение делимости в кольце p[X]. Деление с остатком в кольце p[X].
- Практическое занятие №18 Наибольший общий делитель многочленов. Способы нахождения наибольшего общего делителя. Линейное представление наибольшего общего делителя.
- Практическое занятие №19 Наименьшее общее кратное многочленов. Способы нахождения наименьшего общего кратного многочленов.
- Практическое занятие №20 Корни многочлена. Деление многочлена на двучлен. Схема Горнера. Применение схемы Горнера к решению практических задач.
- Практическое занятие №21 Приводимые и неприводимые над данным полем многочлены. Формулы Виета.
- Практическое занятие №22 Сопряженность комплексных корней многочлена с действительными коэффициентами. Неприводимые многочлены над полем действительных чисел.
- Практическое занятие №23
- 7 . Глоссарий
- 8. Основная и дополнительная литература
- 8.1. Основная литература
- 8.2. Дополнительная литература
- Учебно-методический комплекс