§3. Деление с остатком в кольце p[X].
Определение 1. Многочлен f(x) P[x] делится на многочлен g(x) 0 из этого же кольца с остатком, если h(x) и r(х) из Р[х]: f(x)= g(x) h(x)+r(x), где cm r(x) <cm g(x) r(x) = 0.
Теорема 1. Для любой пары многочленов f(x) и g(x) из кольца Р[х], где g(x) 0, ! пара многочленов h(x) и r(х) из
Р[х]: f(x)=g(x) h(x)+r(x), причём cm r(x) < cm g(x) r(x)=0
Доказательство.
Докажем существование такой пары многочленов.
Пусть f(x) = anxn+an-1 xn-1+...+ а1x+ а0
g(x) = bsхs+bs-1 хs-1+…+b1x+b0
При этом возможны два случая:
1-й случай: f(x) = 0 или cm f(x) < cm g(x), тогда
f(x) = g(x) • 0 + f(x) и искомые многочлены будут равны:
h(x) = 0, r(x) = f(x)
2-й случай: cm f(x) cm g(x), и пусть cm f(x) = n, т.е. аn 0,
cm g(x)=s, т.е. bs 0
Тогда, вычтем из многочлена f(x) многочлен Получим:(1)
cm f1(x) < cm f(x), т.к. в процессе вычитания член anxn будет уничтожен.
Если cm f1(x) > cm g(x), то опять повторим процедуру понижения степени
(2) , гдеcm f2(x) < cm f1(x)
Если cm f2(x) cm g (x), то опять повторим процедуру понижения степени до тех пор пока не получим многочлен fk(x), степень которого будет меньше ст. g(x), т.е. равенство:
Складывая почленно равенства (1),(2).... ,(k), получим:
Обозначим fk(x)= r(x), т.к. его степень меньше cm g(x), тогда f(x)=g(x)h(x) + r(x) (**)
Докажем единственность такого представления:
Предположим противное, пусть
f(x)=g(x) h(x)+r(x),
где
cm r(х) < cm g(x) r(x) = 0
и
f(x) = g(x)h1(x)+r1(x),
где
cm r1(х) < cm g(x) r1(x)=0
Тогда, g(x) [h(x) – h1(x)]= r1(x) - r (x), cm g(x) + cm [h(x) – h1(x)] = =cm (r1(x) - r(х)), т.е. cm g(x) cm (r1(x) - r(x)), что противоречит определению отношения делимости многочленов с остатком. Следовательно, (h1(x) = h2(х)) & (r1(x) = r(x)). Таким образом, отношение делимости в кольце Р[х] обладает почти теми же свойствами, что и в кольце Z, однако есть и небольшие различия, например, кольцо Р[х] более богато обратимыми элементами, чем кольцо Z.
Так, относительно операции умножения в кольце Z всего два обратимых элемента 1, -1, а в кольце Р[х] это все многочлены нулевой степени, т.е. элементы поля Р.
Понятия HОД(f, g) и HOK(f, g) определяются с точностью до постоянного множителя (с), а в кольце Z с точностью до знака.
Действительно, если даны два многочлена f(x) и g(x), а d1(x) и d2(x) их НОД, то (d1(x) /d2(x)) & (d2(x) /d1(x)) => d1(x) = cd2(x) (см. св - во 3), т.е. НОК и НОД определяются с точностью до множителя из поля Р. Так же как и в кольце Z на основе доказанной выше теоремы можно записать алгоритм Евклида: для f(x), g(x)P[x], g(x) 0 и доказать, что последний остаток rn(х) 0 в этом алгоритме будет НОД(f(x), g(x)), что одновременно доказывает и существование НОД(f, g) для f, g P[x].
Задача 1. В кольце Z5[х] найти НОД(f, g) и HOK[f, g], если
f(x) = x2 + x + ,g(x) = x3 –
Решение. Для нахождения НОД(f, g) используем алгоритм Евклида. Делим "углом"' g(x) на f(х)
Итак HOД(f, g) =
Для нахождения HOK[f, g] воспользуемся формулой
итак, HOK[f, g] =
Замечание. В процессе выполнения алгоритма Евклида не только сами многочлены f(x) и g(x), но и получаемые остатки можно умножать на любые числа (не равные нулю), чтобы в частном получались только целые коэффициенты. При этом, конечно, частное искажается, остаток от деления остается с точностью до ассоциированности.
Однако, этого делать нельзя, когда решаем
Задачу 2. В кольце Q[x] с помощью алгоритма Евклида найти линейное представление НОД(f, g), если
f(x) = x5 - 5x4 - 2х3 + 12х - 2х + 12
g(x)= х3 – 5x2 – 3x + 17
Решение.
Найти линейное представление - это значит найти многочлены u(х) и v(x): d(x) = f(x)u(x) + g(x)v(x). Делим f(х) на g(x):
0=r3(x)
Итак, HOД(f, g)=2
Теперь запишем процесс деления многочленов в виде равенств:
f(x) = g(x)•(x2 + l) + (x - 5), g(x) = (x - 5)•(x2 - 3) + 2
Выразим из последнего равенства (f,g) = 2 2 = g(x) - (x - 5)•(x2 - 3) (*)
Из первого равенства выразим остаток r(х) = (х - 5), х - 5 = f(x) - g(x)(x2- 1) и подставим в равенство (*).
Получим:
2 = g(x) - [f (x) - g(x)(x2 + 1)](х2 - 3)
2 = g(x) - f(х)(х2 + 3) + g(x)(x2 + 1)(х2 - 3)
2 = g(x)[l + (х2 + 1)(х2 - 3)] + f (х)(3 - х2)
v(x) = l + (x2+l)(x2 -3) = 1+х4 - 3х2 + х2 - 3=х4 - 2х2 - 2
Ответ: u(x)=3 - x2, v(x)=x4 – 2x2 -2
Замечание. В этой задаче использовались неполные частные, поэтому нельзя домножать многочлены на множители из поля Q.
Определение 2. Многочлены f(x) и g(x) называются взаимно простыми, если (f, g)=c, где с Р.
Чтобы снять неоднозначность, вводится понятие нормированного многочлена.
Определение 3. Многочлен f(x) P[x] называется нормированным, если коэффициент при его старшем члене равен 1.
Например, f(x)=x5 + 3x4 - 2x2 + 2. Тогда, если f(x) и g(x) нормированные и взаимно простые, то (f, g)=l.
Имеет место следующая теорема:
Критерий взаимной простоты: (f, g) = l u, v P[x]:
f(x)u(x) + g(x)v(x) = 1.
Доказательство.
Необходимость. Так как многочлены f и g взаимно просты, то всегда можно записать: fu + gv = l (смотри алгоритм Евклида).
Докажем достаточность. Пусть fu + gv = l, докажем, что (f, g) = l. Предположим противное, пусть многочлены f(x) и g(x) не являются взаимно простыми, т.е. (f, g) = d l. Тогда (f/d) & (g/d) => (fu+gv)/d => (l/d) => cm d(x) = 0 => (d = l).
Yandex.RTB R-A-252273-3
- Алгебра
- Оглавление
- 1. Квалификационная характеристика бакалавра
- 2. Набор компетенций бакалавра
- 3. Рабочая программа
- 3.1. Цели и задачи дисциплины
- 3.2. Обязательные требования к минимуму содержания дисциплины
- 3.3. Распределение часов
- 3.4. Технологическая карта учебного курса «Алгебра»
- 3.5.Содержание дисциплины
- 3.5.1. Лекционный курс — 54 часа
- Лекция №21 Взаимно простые многочлены и их свойства. Наименьшее общее кратное многочленов и его свойства. Способы нахождения наименьшего общего кратного.
- 3.5.2. Практические занятия — 54 часа
- Практическое занятие №6 Перестановки и подстановки. Четные и нечетные подстановки. Определители второго и третьего порядков.
- Практическое занятие №12 Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме.
- 3.5.3. Самостоятельная работа — 40 часов
- 3.5.4. Темы курсовых работ
- 4. Вопросы к зачету и экзамену
- 5. ЛекцИи по алгебре
- Глава 1. Понятия об основных алгебраических структурах.
- §1. Алгебры. Подалгебры. Гомоморфизмы алгебр.
- §2. Группа. Аксиомы группы.
- §3. Подгруппа. Достаточные условия подгруппы.
- §4. Кольцо, поле, линейное пространство.
- Глава 2. Матрицы и определители.
- §1.Матрицы. Группа и кольцо матриц.
- §2. Определители, их свойства.
- Глава 3. Системы линейных уравнений, методы их решения.
- Глава 4. Комплексные числа.
- Глава 5. Теория делимости в кольце z.
- §1. Отношение делимости в z и его свойства.
- §2.Нод(а, b), hok(a, b). Алгоритм Евклида.
- §3. Взаимно простые числа и их свойства.
- §4. Нок целых чисел и его свойства.
- §5. Простые числа и их свойства.
- Глава 6. Теория делимости в кольце р[х].
- §1. Построение кольца р[х].
- §2. Отношение делимости в кольце р[х] и его свойства.
- Свойства отношения делимости в кольце р[X].
- §3. Деление с остатком в кольце p[X].
- §4. Приводимые и неприводимые многочлены в кольце р[х].
- §5. Методы нахождения корней многочлена n - ой степени.
- 6. Практикум по алгебре Практическое занятие №1. Алгебры, подалгебры, гомоморфизмы алгебр.
- Практическое занятие №2. Группа, аксиомы группы. Подгруппа. Достаточные условия подгруппы.
- Практическое занятие №3. Кольцо, поле, линейное пространство.
- Практическое занятие №4. Операции над матрицами. Свойства операций. Группа, кольцо и линейное пространство матриц.
- Практическое занятие №5.
- Практическое занятие №6
- Практическое занятие №12
- Практическое занятие №14
- Практическое занятие №15
- 197, 443, 739, 447, 729, 809
- Практическое занятие №17 Отношение делимости в кольце p[X]. Деление с остатком в кольце p[X].
- Практическое занятие №18 Наибольший общий делитель многочленов. Способы нахождения наибольшего общего делителя. Линейное представление наибольшего общего делителя.
- Практическое занятие №19 Наименьшее общее кратное многочленов. Способы нахождения наименьшего общего кратного многочленов.
- Практическое занятие №20 Корни многочлена. Деление многочлена на двучлен. Схема Горнера. Применение схемы Горнера к решению практических задач.
- Практическое занятие №21 Приводимые и неприводимые над данным полем многочлены. Формулы Виета.
- Практическое занятие №22 Сопряженность комплексных корней многочлена с действительными коэффициентами. Неприводимые многочлены над полем действительных чисел.
- Практическое занятие №23
- 7 . Глоссарий
- 8. Основная и дополнительная литература
- 8.1. Основная литература
- 8.2. Дополнительная литература
- Учебно-методический комплекс