Практическое занятие №17 Отношение делимости в кольце p[X]. Деление с остатком в кольце p[X].
1. Выяснить, делится ли многочлен f(x) на многочлен g(x) в соответствующем кольце, если:
а) f(х) = 10х5 - 4х4 + 2х3-12 g(x) = х7-3х+1 (Z[x])
б) f(х) = х6 - х4 + х2-g(x) = х2 - х +(Z15[x])
в) f(x) = (l+5i)x3- x2+ 2i g(x) = 2ix2 - 8i (C[x])
2. При каких условиях многочлен f(x) делится на многочлен g(x)?
а) f(х) = 8x5 - 3х4 + ах + b на g(x) = x3 +2х -1 в кольце Z[x]
б) f(х) = x4-x2 + наg(x) = х2-х +в кольцеZ7[х]
в) f(x) = 3ix4 +(a)x2 + b на g(x) = 3х2 - (l+i)x + 2i в кольце С[х]
3. Доказать, что если f(x) /g(x), то
1) либо f(x) = 0,
2) либо cm f(x) cm g(x).
4. Найти сумму, разность и произведение многочленов.
а) f(x) = 4х5 + 3х3 + 2х + 8 и g(x) = х4 - 10х + 1 из кольца Z[x]
б) f(x) = х4 + х3 - х -иg(x) = х5 - х4 +из кольцаZ13[x]
в) f(x) = (l-2i)x3 + 2ix2 - 4i+l и g(x) = 5ix2 + 2x-i из кольца С[х]
5. Определить степень суммы и произведения многочленов
а) f(х) = 3х7 + 2x3 + х3 + 5 g(x) = x8 - 2х + 7 в кольце Z[x]
б) f(х) = х15 + х5 - х3 + g(x) = x2 - х + в кольцеZ11[x]
в) f(x) = 3ix7 + (2 - 6i) x2 + 8 g(x) = 7ix3 + 2ix + 1 в кольце С[х]
6. Доказать, что множество многочленов, степень которых не превосходит 5, образует кольцо и линейное пространство относительно соответствующих операций. Указать базис и размерность этого линейного пространства.
7. Выяснить будет ли множество Р[х] полем относительно операций сложения и умножения многочленов.
Yandex.RTB R-A-252273-3- Алгебра
- Оглавление
- 1. Квалификационная характеристика бакалавра
- 2. Набор компетенций бакалавра
- 3. Рабочая программа
- 3.1. Цели и задачи дисциплины
- 3.2. Обязательные требования к минимуму содержания дисциплины
- 3.3. Распределение часов
- 3.4. Технологическая карта учебного курса «Алгебра»
- 3.5.Содержание дисциплины
- 3.5.1. Лекционный курс — 54 часа
- Лекция №21 Взаимно простые многочлены и их свойства. Наименьшее общее кратное многочленов и его свойства. Способы нахождения наименьшего общего кратного.
- 3.5.2. Практические занятия — 54 часа
- Практическое занятие №6 Перестановки и подстановки. Четные и нечетные подстановки. Определители второго и третьего порядков.
- Практическое занятие №12 Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме.
- 3.5.3. Самостоятельная работа — 40 часов
- 3.5.4. Темы курсовых работ
- 4. Вопросы к зачету и экзамену
- 5. ЛекцИи по алгебре
- Глава 1. Понятия об основных алгебраических структурах.
- §1. Алгебры. Подалгебры. Гомоморфизмы алгебр.
- §2. Группа. Аксиомы группы.
- §3. Подгруппа. Достаточные условия подгруппы.
- §4. Кольцо, поле, линейное пространство.
- Глава 2. Матрицы и определители.
- §1.Матрицы. Группа и кольцо матриц.
- §2. Определители, их свойства.
- Глава 3. Системы линейных уравнений, методы их решения.
- Глава 4. Комплексные числа.
- Глава 5. Теория делимости в кольце z.
- §1. Отношение делимости в z и его свойства.
- §2.Нод(а, b), hok(a, b). Алгоритм Евклида.
- §3. Взаимно простые числа и их свойства.
- §4. Нок целых чисел и его свойства.
- §5. Простые числа и их свойства.
- Глава 6. Теория делимости в кольце р[х].
- §1. Построение кольца р[х].
- §2. Отношение делимости в кольце р[х] и его свойства.
- Свойства отношения делимости в кольце р[X].
- §3. Деление с остатком в кольце p[X].
- §4. Приводимые и неприводимые многочлены в кольце р[х].
- §5. Методы нахождения корней многочлена n - ой степени.
- 6. Практикум по алгебре Практическое занятие №1. Алгебры, подалгебры, гомоморфизмы алгебр.
- Практическое занятие №2. Группа, аксиомы группы. Подгруппа. Достаточные условия подгруппы.
- Практическое занятие №3. Кольцо, поле, линейное пространство.
- Практическое занятие №4. Операции над матрицами. Свойства операций. Группа, кольцо и линейное пространство матриц.
- Практическое занятие №5.
- Практическое занятие №6
- Практическое занятие №12
- Практическое занятие №14
- Практическое занятие №15
- 197, 443, 739, 447, 729, 809
- Практическое занятие №17 Отношение делимости в кольце p[X]. Деление с остатком в кольце p[X].
- Практическое занятие №18 Наибольший общий делитель многочленов. Способы нахождения наибольшего общего делителя. Линейное представление наибольшего общего делителя.
- Практическое занятие №19 Наименьшее общее кратное многочленов. Способы нахождения наименьшего общего кратного многочленов.
- Практическое занятие №20 Корни многочлена. Деление многочлена на двучлен. Схема Горнера. Применение схемы Горнера к решению практических задач.
- Практическое занятие №21 Приводимые и неприводимые над данным полем многочлены. Формулы Виета.
- Практическое занятие №22 Сопряженность комплексных корней многочлена с действительными коэффициентами. Неприводимые многочлены над полем действительных чисел.
- Практическое занятие №23
- 7 . Глоссарий
- 8. Основная и дополнительная литература
- 8.1. Основная литература
- 8.2. Дополнительная литература
- Учебно-методический комплекс