logo
Алгебра_Часть_1

Практическое занятие №18 Наибольший общий делитель многочленов. Способы нахождения наибольшего общего делителя. Линейное представление наибольшего общего делителя.

1. Дать определение НОД(f, g) и HОK(f, g).

2. Доказать, что если f(x) = g(x)h(x) + r(x), где cm r(x) < cm g(x), то (f, g) = (g, r)

3. Доказать, что (f,g) = rn(x), где rn(х) - последний, неравный нулю, остаток в алгоритме Евклида.

4. Доказать, что если d = (f, g), то u, v  P[x]:

d(x) = f(x)u(x) + g(x)v(x).

5. Доказать, что

6. Разделить с остатком многочлен f(x) на g(x):

а) f(x) = 2x4 - 4x3 + 4x2 - 6, g(x) = x2 - 3x - l, f, gZ[x]

б) f(x) = x4 + x2 - , g(x)=x3 - x -, f, gZ7[x]

в) f(x) = (10 + 5i)x4 - (15 + 5i)x2 + (10 - 5i), g(x) = (2 + i)x2 - 3x + i, f, gC[x].

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4