22. Решение системы линейных уравнений матричным методом. Правило Крамера.
Рассмотрим систему уравнений |
- матрица системы |
- матрицы-столбцы неизвестных и свободных членов. |
Очевидно, что , |
тогда АХ=С Такое равенство называется матричным уравнением. Если матрица А системы невырожденная, (det А 0), то это уравнение решается следующим образом: Умножим обе его части на матрицу А-1, обратную матрице А А-1(АХ)=А-1С или, (А-1А) · Х = А-1·С. но так как А-1А=Е, и ЕХ=Х Х=А-1С Например, решим матричным способом систему |
матрица системы |
Не является ли матрица А вырожденной? Найдем ее определитель: А =1·[-1·4 – 1·2] – 1·[2·4 – 2·4] + 2·[2·1 – 4·(-1)] = -6 + 12 = 6 Определитель не равен нулю, то есть матрица не вырожденная. Значит, существует обратная матрица А11 = (-1)1+1·М11 = (+1)·[-1·4 – 1·2] = -6 А12 = (-1)1+2·М12 = (-1)·[2·4 – 2·4] = 0 А13 = (-1)1+3·М13 = (+1)·[2·1 – 4·(-1)] = 6 А21 = (-1)2+1·М21 = (-1)·[1·4 – 1·2] = -2 А22 = (-1)2+2·М22 = [1·4 – 2·4] = -4 А23 = (-1)2+3·М23 = (-1)·[1·1 – 4·1] = 3 А31 = (-1)3+1М31 = [1·2 – (-1)·2] = 4 А32 = (-1)3+2·М32 = [(-1)·1·2 – 2·2] = 2 А33 = (-1)3+3·М33 = [1·(-1) – 2·1] = -3 |
Можно убедиться проверкой в правильности решения: подставим вектор Х в первоначальное матричное уравнение.
Действительно вектор Х удовлетворяет заданной системе |
Решение систем уравнений методом Крамера Применим теперь наши знания о матрицах к решению систем уравнений первой степени. Рассмотрим систему двух уравнений с двумя неизвестными: |
или коротко или АХ=С |
система записана в матричном виде (как произведение матриц) Решим эту простенькую систему школьными методами. Умножим первое уравнение на а22, а второе на (-а12) и сложим (а11а22 – а21а12)х1 = с1а22 – с2а12 аналогично (а11а22 – а21а12)х2 = с2а11 – с1а21 |
1) но а11а22 – а21а12 = - это определитель матрицы А(det А) или его еще называют определитель системы и он составлен из коэффициентов при неизвестных. Обозначим его |
2) определитель, который получится из det А, если в нем столбец коэффициентов при х1 (первый столбец) заменить на столбец правых частей. Обозначим его Х1 |
3) |
|
Видим, что <="" font=""> |
Как вы понимаете, если мы возьмем систему трех уравнений с тремя неизвестными или n уравнений с n неизвестными, то формулы останутся те же: |
Эти формулы широко известны и называются формулами Крамера. Мы же с Вами займемся анализом того существует ли решение и единственно ли оно? Возможны 3 случая: 1. 0 Тогда xi= xi/ - решение существует, причем единственное. 2. =0 , а какой-либо из xi 0 , то есть у нас в xi= xi/ производится деление на 0, система не имеет решения (несовместна). 3. =0 и все xi=0 то система имеет бесконечно много решений. Пример: |
Так как второе уравнение получается из первого умножением на 2, то наша система равносильна такой системе. |
Так получилось, потому что первое и второе уравнения систем эквивалентны и фактически мы имеем систему двух уравнений с тремя неизвестными, то есть неопределенную систему. Она имеет бесчисленное множество решений. Положив, например, z=0 получим систему |
Решив ее, найдем 11х=0, х=0, y=1 То есть решение первоначальной системы x=0, y=0, z=0. Если бы мы положили z=1, получили бы еще один ответ и так далее. |
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – наA21 и 3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца
.
Далее рассмотрим коэффициенты при x2:
Аналогично можно показать, что и .
Наконец несложно заметить, что
Таким образом, получаем равенство: .
Следовательно, .
Аналогично выводятся равенства и , откуда и следует утверждение теоремы.
Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.
- Свойства
- [Править]Неравенство Коши — Буняковского
- Нормальное уравнение плоскости.
- Общее уравнение прямой - основные сведения.
- Переход от общего уравнения прямой
- 13,14,15,16 В отдельном файле
- 17. Цилиндрические поверхности с образующей, параллельной одной из координатных осей.
- 18. Матрицы. Линейные операции над матрицами, их свойства.
- 19. Нелинейные операции над матрицами (умножение, транспонирование), их свойства. Умножение матриц
- Транспонирование и эрмитово сопряжение
- 20. Обратная матрица. Теорема существования, единственность, свойства.
- 21. Матричные уравнения. Теорема существования и единственности решения.
- 22. Решение системы линейных уравнений матричным методом. Правило Крамера.
- 23. Ранг матрицы. Свойства ранга.
- 24. Линейная зависимость столбцов матрицы. Свойства Линейная зависимость и независимость строк (столбцов) матрицы
- Свойства линейно зависимых и линейно независимых столбцов матриц
- 25. Базисный минор. Теорема о базисном миноре. Теорема о ранге.
- 26. Системы линейных уравнений. Теорема Кронекера - Капелли о совместимости систем.
- 27. Однородные системы линейных уравнений. Свойства их решений. Общее решение ослу.
- 28. Фундаментальная система решений ослу
- 29. Неоднородные системы линейных уравнений. Свойства их решений. Построение общего решения нслу.
- 30. Линейные пространства. Определение. Примеры, следствия из аксиом.
- 31. Линейная зависимость векторов линейного пространства. Свойства
- 32. Базис линейного пространства. Размерность
- 33. Единственность разложения векторов по базису. Координаты. Действия над векторами в координатной форме.
- 34. Изменение координат вектора при переходе к новому базису. Матрица перехода.
- 35. Евклидово пространство. Определение, примеры. Модуль вектора. Угол между векторами. Неравенство Коши-Буняковского.
- 36. Линейный оператор. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к новому базису.
- 37. Образ и ядро линейного оператора. Ранг линейного оператора.
- 38.В отдельном файле.
- 39. Собственные векторы и собственные значения линейного оператора. Их свойства
- 40. Последовательность. Предел последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Определение
- [Править]Примеры
- [Править]Операции над последовательностями
- [Править]Подпоследовательности
- [Править]Примеры
- [Править]Свойства
- [Править]Предельная точка последовательности
- [Править]Предел последовательности
- [Править]Некоторые виды последовательностей
- [Править]Ограниченные и неограниченные последовательности
- [Править]Критерий ограниченности числовой последовательности
- [Править]Свойства ограниченных последовательностей
- [Править]Бесконечно большие и бесконечно малые последовательности
- [Править]Свойства бесконечно малых последовательностей
- [Править]Сходящиеся и расходящиеся последовательности
- [Править]Свойства сходящихся последовательностей
- 41. Понятие функции. Способы задания функции.
- 42. Предел функции в точке, в бесконечности. Геометрическая интерпретация. Определения и примеры.
- 43. Теоремы о пределах:
- 44. Непрерывные функции и их свойства:
- Свойства Локальные
- Глобальные
- Теорема о сохранении знака для непрерывной функции
- Доказательство
- 45. Первый замечательный предел. Следствия. Теорема о пределе суммы, произведения и частного.
- 46. Ограниченные функции и их свойства. Необходимое условие существования предела функции в точке.
- 47. Бесконечно малые функции, их свойства. Леммы
- Леммы о бесконечно малых
- 48. Критерий существования предела функции в точке.
- 49. Бесконечно большие функции, связь с бесконечно малыми функциями.
- 50. Раскрытие неопределенностей. Второй замечательный предел.
- 51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
- 52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.
- 3.2. Основные формулы эквивалентности бесконечно малых.
- 53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.
- 54. Точки разрыва функции и их классификация.
- 55. Свойства функций, непрерывных на отрезке.
- 56. Задачи, приводящие к понятию производной. Понятие производной. Геометрический и физический смысл производной.
- 1.1 Задачи, приводящие к понятию производной
- , Если .
- 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- 58. Производная сложной функции.
- 59. Дифференциал функции. Инвариантность формы записи первого дифференциала.
- 60. Обратная функция и ее производная.
- 60. Обратная функция и ее производная.
- 61. Правила дифференцирования.
- 63. Логарифмическое дифференцирование. Производная степенно-показательной функции.
- 5.4. Производная степенно-показательной функции
- 64. См. Отдельный файл.
- 65. Теоремы о среднем – Ферма, Ролля.
- 66. Теоремы о среднем – Лагранжа, Коши.
- 67. Дифференциалы высших порядков. Неинвариантность формы записи.
- 68. Правило Лопиталя. Раскрытие неопределенностей с использованием правила Лопиталя.
- 69. Формула Тейлора. Разложение функции по формуле Тейлора.
- 70. Монотонность функции. Условия монотонности.
- 71. Экстремумы функции. Необходимое условие существования экстремума.
- 72. Достаточные условия экстремума.
- 73. Выпуклость и вогнутость графика функции. Точки перегиба.
- 74. Асимптоты графика.
- [Править]Виды асимптот графиков [править]Вертикальная
- [Править]Горизонтальная
- [Править]Наклонная
- [Править]Нахождение асимптот
- 76. Метод замены переменных в неопределенном интеграле.
- 77. Интегрирование по частям в неопределенном интеграле. Классы функций, интегрируемых по частям.
- 78. Рациональные дроби. Разложение рациональных дробей на сумму простейших.
- 79. Интегрирование простейших рациональных дробей.
- 80. Интегрирование тригонометрических функций.
- 81. Интегрирование иррациональностей вида…
- 82. Интегрирование иррациональностей вида…
- 83. Понятие определенного интеграла, его геометрический смысл и свойства. Теорема о среднем.
- 84. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 85. Полярная система координат. Уравнения кривых в полярной системе координат.
- Уравнение кривых в полярных координатах
- Окружность
- Полярная роза
- Спираль Архимеда
- Конические сечения
- 86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.
- 87. Вычисление объемов тел, объемов тел вращения.
- 88. Приложение определенного интеграла к задачам физики.
- 89. Несобственные интегралы I рода.
- 89. Несобственные интегралы I рода.
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- 90. Несобственные интегралы II рода.
- Геометрический смысл несобственных интегралов II рода