[Править]Свойства сходящихся последовательностей
Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.
Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.
Любая сходящаяся последовательность элементов хаусдорфова пространства имеет только один предел.
Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.
Последовательность сходится тогда и только тогда, когда она является ограниченной и при этом её верхний и нижний пределы совпадают.
Если последовательность сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность , которая является ограниченной.
Сумма сходящихся последовательностей также является сходящейся последовательностью.
Разность сходящихся последовательностей также является сходящейся последовательностью.
Произведение сходящихся последовательностей также является сходящейся последовательностью.
Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.
Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.
Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.
Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.
Если все элементы некоторой последовательности, начиная с некоторого номера, лежат на отрезке между соответствующими элементами двух других сходящихся к одному и тому же пределу последовательностей, то и эта последовательность также сходится к такому же пределу.
Любую сходящуюся последовательность можно представить в виде , где — предел последовательности , а — некоторая бесконечно малая последовательность.
Всякая сходящаяся последовательность является фундаментальной. При этом фундаментальная числовая последовательность всегда сходится (как и любая фундаментальная последовательность элементов полного пространства).
- Свойства
- [Править]Неравенство Коши — Буняковского
- Нормальное уравнение плоскости.
- Общее уравнение прямой - основные сведения.
- Переход от общего уравнения прямой
- 13,14,15,16 В отдельном файле
- 17. Цилиндрические поверхности с образующей, параллельной одной из координатных осей.
- 18. Матрицы. Линейные операции над матрицами, их свойства.
- 19. Нелинейные операции над матрицами (умножение, транспонирование), их свойства. Умножение матриц
- Транспонирование и эрмитово сопряжение
- 20. Обратная матрица. Теорема существования, единственность, свойства.
- 21. Матричные уравнения. Теорема существования и единственности решения.
- 22. Решение системы линейных уравнений матричным методом. Правило Крамера.
- 23. Ранг матрицы. Свойства ранга.
- 24. Линейная зависимость столбцов матрицы. Свойства Линейная зависимость и независимость строк (столбцов) матрицы
- Свойства линейно зависимых и линейно независимых столбцов матриц
- 25. Базисный минор. Теорема о базисном миноре. Теорема о ранге.
- 26. Системы линейных уравнений. Теорема Кронекера - Капелли о совместимости систем.
- 27. Однородные системы линейных уравнений. Свойства их решений. Общее решение ослу.
- 28. Фундаментальная система решений ослу
- 29. Неоднородные системы линейных уравнений. Свойства их решений. Построение общего решения нслу.
- 30. Линейные пространства. Определение. Примеры, следствия из аксиом.
- 31. Линейная зависимость векторов линейного пространства. Свойства
- 32. Базис линейного пространства. Размерность
- 33. Единственность разложения векторов по базису. Координаты. Действия над векторами в координатной форме.
- 34. Изменение координат вектора при переходе к новому базису. Матрица перехода.
- 35. Евклидово пространство. Определение, примеры. Модуль вектора. Угол между векторами. Неравенство Коши-Буняковского.
- 36. Линейный оператор. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к новому базису.
- 37. Образ и ядро линейного оператора. Ранг линейного оператора.
- 38.В отдельном файле.
- 39. Собственные векторы и собственные значения линейного оператора. Их свойства
- 40. Последовательность. Предел последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Определение
- [Править]Примеры
- [Править]Операции над последовательностями
- [Править]Подпоследовательности
- [Править]Примеры
- [Править]Свойства
- [Править]Предельная точка последовательности
- [Править]Предел последовательности
- [Править]Некоторые виды последовательностей
- [Править]Ограниченные и неограниченные последовательности
- [Править]Критерий ограниченности числовой последовательности
- [Править]Свойства ограниченных последовательностей
- [Править]Бесконечно большие и бесконечно малые последовательности
- [Править]Свойства бесконечно малых последовательностей
- [Править]Сходящиеся и расходящиеся последовательности
- [Править]Свойства сходящихся последовательностей
- 41. Понятие функции. Способы задания функции.
- 42. Предел функции в точке, в бесконечности. Геометрическая интерпретация. Определения и примеры.
- 43. Теоремы о пределах:
- 44. Непрерывные функции и их свойства:
- Свойства Локальные
- Глобальные
- Теорема о сохранении знака для непрерывной функции
- Доказательство
- 45. Первый замечательный предел. Следствия. Теорема о пределе суммы, произведения и частного.
- 46. Ограниченные функции и их свойства. Необходимое условие существования предела функции в точке.
- 47. Бесконечно малые функции, их свойства. Леммы
- Леммы о бесконечно малых
- 48. Критерий существования предела функции в точке.
- 49. Бесконечно большие функции, связь с бесконечно малыми функциями.
- 50. Раскрытие неопределенностей. Второй замечательный предел.
- 51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
- 52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.
- 3.2. Основные формулы эквивалентности бесконечно малых.
- 53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.
- 54. Точки разрыва функции и их классификация.
- 55. Свойства функций, непрерывных на отрезке.
- 56. Задачи, приводящие к понятию производной. Понятие производной. Геометрический и физический смысл производной.
- 1.1 Задачи, приводящие к понятию производной
- , Если .
- 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- 58. Производная сложной функции.
- 59. Дифференциал функции. Инвариантность формы записи первого дифференциала.
- 60. Обратная функция и ее производная.
- 60. Обратная функция и ее производная.
- 61. Правила дифференцирования.
- 63. Логарифмическое дифференцирование. Производная степенно-показательной функции.
- 5.4. Производная степенно-показательной функции
- 64. См. Отдельный файл.
- 65. Теоремы о среднем – Ферма, Ролля.
- 66. Теоремы о среднем – Лагранжа, Коши.
- 67. Дифференциалы высших порядков. Неинвариантность формы записи.
- 68. Правило Лопиталя. Раскрытие неопределенностей с использованием правила Лопиталя.
- 69. Формула Тейлора. Разложение функции по формуле Тейлора.
- 70. Монотонность функции. Условия монотонности.
- 71. Экстремумы функции. Необходимое условие существования экстремума.
- 72. Достаточные условия экстремума.
- 73. Выпуклость и вогнутость графика функции. Точки перегиба.
- 74. Асимптоты графика.
- [Править]Виды асимптот графиков [править]Вертикальная
- [Править]Горизонтальная
- [Править]Наклонная
- [Править]Нахождение асимптот
- 76. Метод замены переменных в неопределенном интеграле.
- 77. Интегрирование по частям в неопределенном интеграле. Классы функций, интегрируемых по частям.
- 78. Рациональные дроби. Разложение рациональных дробей на сумму простейших.
- 79. Интегрирование простейших рациональных дробей.
- 80. Интегрирование тригонометрических функций.
- 81. Интегрирование иррациональностей вида…
- 82. Интегрирование иррациональностей вида…
- 83. Понятие определенного интеграла, его геометрический смысл и свойства. Теорема о среднем.
- 84. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 85. Полярная система координат. Уравнения кривых в полярной системе координат.
- Уравнение кривых в полярных координатах
- Окружность
- Полярная роза
- Спираль Архимеда
- Конические сечения
- 86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.
- 87. Вычисление объемов тел, объемов тел вращения.
- 88. Приложение определенного интеграла к задачам физики.
- 89. Несобственные интегралы I рода.
- 89. Несобственные интегралы I рода.
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- 90. Несобственные интегралы II рода.
- Геометрический смысл несобственных интегралов II рода