58. Производная сложной функции.
Функции сложного вида не совсем корректно называть термином «сложная функция». К примеру, смотрится очень внушительно, но сложной эта функция не является, в отличие от.
В этой статье мы разберемся с понятием сложной функции, научимся выявлять ее в составе элементарных функций, дадим формулу нахождения ее производной и подробно рассмотрим решение характерных примеров.
При решении примеров будем постоянно использовать таблицу производных и правила дифференцирования, так что держите их перед глазами.
Сложная функция – это функция, аргументом которой также является функция.
С нашей точки зрения, это определение наиболее понятно. Условно можно обозначать какf(g(x)). То есть, g(x) как бы аргумент функции f(g(x)).
К примеру, пусть f – функция арктангенса, а g(x) = lnx есть функция натурального логарифма, тогда сложная функция f(g(x)) представляет собой arctg(lnx). Еще пример: f – функция возведения в четвертую степень, а - целая рациональная функция (смотритеклассификацию элементарных функций), тогда .
В свою очередь, g(x) также может быть сложной функцией. Например, . Условно такое выражение можно обозначить как. Здесьf – функция синуса, - функция извлечения квадратного корня,- дробная рациональная функция. Логично предположить, что степень вложенности функций может быть любым конечным натуральным числом.
Часто можно слышать, что сложную функцию называют композицией функций.
Формула нахождения производной сложной функции.
Пример.
Найти производную сложной функции .
Решение.
В данном примере f – функция возведения в квадрат, а g(x) = 2x+1 – линейная функция.
Вот подробное решение с использованием формулы производной сложной функции:
Давайте найдем эту производную, предварительно упростив вид исходной функции.
Следовательно,
Как видите, результаты совпадают.
Постарайтесь не путать, какая функция есть f, а какая g(x).
Поясним это примером на внимательность.
Пример.
Найти производные сложных функций и.
Решение.
В первом случае f – это функция возведения в квадрат, а g(x) – функция синуса, поэтому .
Во втором случае f – это функция синуса, а - степенная функция. Следовательно, по формуле произведения сложной функции имеем
Формула производной для функции имеет вид
Пример.
Продифференцировать функцию .
Решение.
В этом примере сложную функцию можно условно записать как , где- функция синуса, функция возведения в третью степень, функция логарифмирования по основаниюe, функция взятия арктангенса и линейная функция соответственноПо формуле производной сложной функции
Теперь находим
как производную синуса из таблицы производных:
- как производную степенной функции:
- как производную логарифмической функции:
- как производную арктангенса:
При дифференцировании выносим двойку за знак производной и применяем формулу производной степенной функции с показателем равным единице:
Собираем воедино полученные промежуточные результаты:
- Свойства
- [Править]Неравенство Коши — Буняковского
- Нормальное уравнение плоскости.
- Общее уравнение прямой - основные сведения.
- Переход от общего уравнения прямой
- 13,14,15,16 В отдельном файле
- 17. Цилиндрические поверхности с образующей, параллельной одной из координатных осей.
- 18. Матрицы. Линейные операции над матрицами, их свойства.
- 19. Нелинейные операции над матрицами (умножение, транспонирование), их свойства. Умножение матриц
- Транспонирование и эрмитово сопряжение
- 20. Обратная матрица. Теорема существования, единственность, свойства.
- 21. Матричные уравнения. Теорема существования и единственности решения.
- 22. Решение системы линейных уравнений матричным методом. Правило Крамера.
- 23. Ранг матрицы. Свойства ранга.
- 24. Линейная зависимость столбцов матрицы. Свойства Линейная зависимость и независимость строк (столбцов) матрицы
- Свойства линейно зависимых и линейно независимых столбцов матриц
- 25. Базисный минор. Теорема о базисном миноре. Теорема о ранге.
- 26. Системы линейных уравнений. Теорема Кронекера - Капелли о совместимости систем.
- 27. Однородные системы линейных уравнений. Свойства их решений. Общее решение ослу.
- 28. Фундаментальная система решений ослу
- 29. Неоднородные системы линейных уравнений. Свойства их решений. Построение общего решения нслу.
- 30. Линейные пространства. Определение. Примеры, следствия из аксиом.
- 31. Линейная зависимость векторов линейного пространства. Свойства
- 32. Базис линейного пространства. Размерность
- 33. Единственность разложения векторов по базису. Координаты. Действия над векторами в координатной форме.
- 34. Изменение координат вектора при переходе к новому базису. Матрица перехода.
- 35. Евклидово пространство. Определение, примеры. Модуль вектора. Угол между векторами. Неравенство Коши-Буняковского.
- 36. Линейный оператор. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к новому базису.
- 37. Образ и ядро линейного оператора. Ранг линейного оператора.
- 38.В отдельном файле.
- 39. Собственные векторы и собственные значения линейного оператора. Их свойства
- 40. Последовательность. Предел последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Определение
- [Править]Примеры
- [Править]Операции над последовательностями
- [Править]Подпоследовательности
- [Править]Примеры
- [Править]Свойства
- [Править]Предельная точка последовательности
- [Править]Предел последовательности
- [Править]Некоторые виды последовательностей
- [Править]Ограниченные и неограниченные последовательности
- [Править]Критерий ограниченности числовой последовательности
- [Править]Свойства ограниченных последовательностей
- [Править]Бесконечно большие и бесконечно малые последовательности
- [Править]Свойства бесконечно малых последовательностей
- [Править]Сходящиеся и расходящиеся последовательности
- [Править]Свойства сходящихся последовательностей
- 41. Понятие функции. Способы задания функции.
- 42. Предел функции в точке, в бесконечности. Геометрическая интерпретация. Определения и примеры.
- 43. Теоремы о пределах:
- 44. Непрерывные функции и их свойства:
- Свойства Локальные
- Глобальные
- Теорема о сохранении знака для непрерывной функции
- Доказательство
- 45. Первый замечательный предел. Следствия. Теорема о пределе суммы, произведения и частного.
- 46. Ограниченные функции и их свойства. Необходимое условие существования предела функции в точке.
- 47. Бесконечно малые функции, их свойства. Леммы
- Леммы о бесконечно малых
- 48. Критерий существования предела функции в точке.
- 49. Бесконечно большие функции, связь с бесконечно малыми функциями.
- 50. Раскрытие неопределенностей. Второй замечательный предел.
- 51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
- 52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.
- 3.2. Основные формулы эквивалентности бесконечно малых.
- 53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.
- 54. Точки разрыва функции и их классификация.
- 55. Свойства функций, непрерывных на отрезке.
- 56. Задачи, приводящие к понятию производной. Понятие производной. Геометрический и физический смысл производной.
- 1.1 Задачи, приводящие к понятию производной
- , Если .
- 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
- 58. Производная сложной функции.
- 59. Дифференциал функции. Инвариантность формы записи первого дифференциала.
- 60. Обратная функция и ее производная.
- 60. Обратная функция и ее производная.
- 61. Правила дифференцирования.
- 63. Логарифмическое дифференцирование. Производная степенно-показательной функции.
- 5.4. Производная степенно-показательной функции
- 64. См. Отдельный файл.
- 65. Теоремы о среднем – Ферма, Ролля.
- 66. Теоремы о среднем – Лагранжа, Коши.
- 67. Дифференциалы высших порядков. Неинвариантность формы записи.
- 68. Правило Лопиталя. Раскрытие неопределенностей с использованием правила Лопиталя.
- 69. Формула Тейлора. Разложение функции по формуле Тейлора.
- 70. Монотонность функции. Условия монотонности.
- 71. Экстремумы функции. Необходимое условие существования экстремума.
- 72. Достаточные условия экстремума.
- 73. Выпуклость и вогнутость графика функции. Точки перегиба.
- 74. Асимптоты графика.
- [Править]Виды асимптот графиков [править]Вертикальная
- [Править]Горизонтальная
- [Править]Наклонная
- [Править]Нахождение асимптот
- 76. Метод замены переменных в неопределенном интеграле.
- 77. Интегрирование по частям в неопределенном интеграле. Классы функций, интегрируемых по частям.
- 78. Рациональные дроби. Разложение рациональных дробей на сумму простейших.
- 79. Интегрирование простейших рациональных дробей.
- 80. Интегрирование тригонометрических функций.
- 81. Интегрирование иррациональностей вида…
- 82. Интегрирование иррациональностей вида…
- 83. Понятие определенного интеграла, его геометрический смысл и свойства. Теорема о среднем.
- 84. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 85. Полярная система координат. Уравнения кривых в полярной системе координат.
- Уравнение кривых в полярных координатах
- Окружность
- Полярная роза
- Спираль Архимеда
- Конические сечения
- 86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.
- 87. Вычисление объемов тел, объемов тел вращения.
- 88. Приложение определенного интеграла к задачам физики.
- 89. Несобственные интегралы I рода.
- 89. Несобственные интегралы I рода.
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- 90. Несобственные интегралы II рода.
- Геометрический смысл несобственных интегралов II рода