3.2.4. Исследование взаимного расположения прямых
I. Исследовать взаимное расположение прямых, заданных общими уравнениями в АСК на плоскости.
Дано. R = , l1 : A1x + B1y + C1 = 0, l2 : A2x + B2y + C2 = 0.
Исследовать взаимное расположение l1 и l2 .
Исследование. Взаимное расположение прямых на плоскости зависит от числа их общих точек. Точка является общей для двух прямых тогда и только тогда, когда её координаты удовлетворяют уравнениям обеих прямых, т.е. удовлетворяют системе уравнений
(21)
Таким образом геометрическая задача сведена к алгебраической – к исследованию системы двух уравнений с двумя неизвестными. Из курса алгебры известно, что для такой системы возможны три случая.
1. . В этом случае система (21) имеет единственное решение. На геометрическом языке это означает, что прямыеl1 и l2 имеют одну общую точку, т.е. пересекаются. Итак, условие есть условие пересечения прямых, заданных общими уравнениями.
2. . В этом случае уравнения системы (21) эквивалентны, т.е. все решения одного из них являются решениями другого. На геометрическом языке – все точки одной прямой лежат на другой, т.е. прямые совпадают.
3. . В этом случае система (21) не имеет ни одного решения. На геометрическом языке – прямыеl1 и l2 не имеют ни одной общей точки.
Если вспомнить определение: прямые l1 и l2 называются параллельными, если они лежат в одной плоскости и либо совпадают, либо не имеют ни одной общей точки, то получаем, что прямые l1 и l2 параллельны тогда и только тогда, когда .
II. Исследовать взаимное расположение прямых на плоскости в АСК, если одна из прямых задана общим уравнением, а вторая – параметрическими уравнениями.
Дано. R = , l1 : Ax + By + C = 0, l2 :
Исследовать взаимное расположение l1 и l2 .
Исследование. Взаимное расположение прямых на плоскости зависит от числа их общих точек. Точка является общей для двух прямых тогда и только тогда, когда её координаты удовлетворяют уравнениям обеих прямых, т.е. удовлетворяют системе уравнений
(22)
Подставив выражения х и у в первое уравнение и приведя подобные, получим
t(Am + Bn) + (Ax0 + By0 + C) = 0 (23)
Для уравнения (23) возможны три случая.
1. Am + Bn 0. В этом случае Уравнение (23) имеет одно решение. На геометрическом языке это значит, что l1 и l2 имеют одну общую точку. Получили условие пересечения прямых.
2. Am + Bn = 0 и Ax0 + By0 + C = 0. В этом случае уравнение (23) имеет вид 0t + 0 = 0. Этому уравнению удовлетворяют все t R. На геометрическом языке это значит, что все точки второй прямой принадлежат первой прямой, т.е. прямые совпадают.
3. Am + Bn = 0, но Ax0 + By0 + C 0. Уравнение (23) не имеет решения. Следовательно, прямые l1 и l2 не имеют ни одной общей точки.
Из случаев 2 и 3 получаем: прямые l1 и l2 параллельны тогда и только тогда, когда Am + Bn = 0.
III. Исследовать взаимное расположение двух прямых в АСК в пространстве, если прямые заданы параметрическими (или каноническими) уравнениями.
Дано: R = , ,
: .
Исследовать взаимное расположение l1 и l2 .
Исследование. Из уравнений первой прямой М1(х1, у1, z1) l1, , l1. Из уравнений второй прямой М2(х2, у2, z2) l2,
, l2. Возможны следующие случаи. 1. l1l2 . 2. l1= l2 и М1 l2 и . |
Рис. 34 |
3. l1 пересекает l2 векторы компланарны = 0.
4. l1 скрещивается с l2 векторы не компланарны 0.
IV. Исследовать взаимное расположение двух прямых в АСК в пространстве, если одна прямая задана общими, а вторая – параметрическими (или каноническими) уравнениями.
Дано: R = ,
Исследовать взаимное расположение l1 и l2 .
Исследование сводится к исследованию системы пяти уравнений с четырьмя неизвестными. Подставив выражения х, у, z из уравнений второй прямой в уравнения первой прямой, получим
(*)
Исследуйте систему (*) самостоятельно.
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература