3.6.2.6. Расстояние между скрещивающимися прямыми
Дано: ,l1: , l2 : , l1 и l2 скрещиваются. Найти d (l1, l2). Из уравнений l1 и l2 следует, что M1 (x1, y1, z1) l1, M2 (x2, y2, z2) l2 и векторы ипараллельны |
Рис. 53 |
прямым l1 и l2 соответственно. Искомое расстояние равно высоте параллелепипеда, построенного на векторах ,и. Следовательно,
.
Переписав это равенство в координатах, получим
(54)
Задача 19. Дано: ,l1 : l2 :
Проверьте, что l1 и l2 скрещиваются и найдите расстояние между ними.
Решение. Найдём направляющий вектор прямой l1 и какую-нибудь точку на ней.
, М1 = {1, 2, 9}. Из уравнений l2 следует, что М2 (4, 1, 0) и 1, 3}.
Вычислим . Следовательно,l1 и l скрещиваются. Найдём . Следовательно,
= и.
3.6.3. Геометрический смысл неравенства Ах + Ву + Сz + D 0 ( 0, 0, 0)
Дано: R = , Ах + Ву + Сz + D 0. Исследовать, какую фигуру задаёт данное неравенство. Уравнение Ах + Ву + Сz + D = 0 задаёт плоскость. Пусть это плоскость П. Рассмотрим все точки пространства, не лежащие на П. Вектор не параллелен плоскостиП. Действительно, если бы был параллелен П, то АА + ВВ + СС = А2 + В2 + С2= 0. Но это невозможно. |
Рис. 54 |
Рассмотрим множество всех точек пространства, не лежащих на плоскости П. Пусть М – любая из этих точек. Проведём через точку М прямую, параллельную вектору , и пусть она пересекаетП в точке N. Векторы иколлинеарны,, следовательно,. () Очевидно, 0 когда точки М лежат в одной открытой полуплоскости с границей П, а именно в той, в сторону которой направлен вектор . И 0 когда точки М лежат в другой открытой полуплоскости с этой же границей. Перейдём к координатам. Пусть М (х, у, z) и N (х1, у1, z1). Тогда = {x x1, y y1, z z1}. Равенство () в координатах перепишется:
x x1 = A, y y1 = B, z z1 = C.
Отсюда x1 = x A, y1 = y B, z1 = z C. Так как N П, то Ах1 + Ву1 + Сz1 + D = 0. Следовательно, А(x A) + В(y B) + С (z C) + D = 0. Ах + Ву + Сz + D = (A2 + B2 + C2).
Так как A2 + B2 + C2 0, то знак Ах + Ву + Сz + D совпадает со знаком .
Итак, Ах + Ву + Сz + D 0 точки М лежат в одной открытой полуплоскости с границей П, а именно в той, в сторону которой направлен вектор .Ах + Ву + Сz + D 0 точки М лежат в другой открытой полуплоскости с этой же границей.
Неравенства Ах + Ву + Сz + D 0 и Ах + Ву + Сz + D 0 определяют замкнутые полуплоскости (их называют просто полуплоскости) с границей П.
Задача 20. Какую фигуру задаёт в аффинной системе координат система ?
Решение. Уравнение x + z 2 = 0 задаёт плоскость П1, параллельную оси (Оу) и пересекающую оси (Ох) и (Оz) в точках (2, 0, 0) и (0, 0, 2) соответственно. Неравенство задаёт полуплоскость с границейП1, в которой не лежит начало координат (ибо координаты начала координат не удовлетворяют этому неравенству). Уравнение 2x + y 4 = 0 определяет плоскость П2, параллельную оси (Оz) и пересекающую оси (Ох) и (Оу) в точках (2, 0, 0) и (0, 4, 0). Неравенство |
задаёт полуплоскость с границей П2 , в которой не лежит начало координат. Плоскости П1 и П2 пересекаются по прямой АВ. Данная система задаёт пару вертикальных двугранных углов с гранями П1 и П2, ни в одном из которых не лежит начало координат.
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература