logo
АНАЛИТ

3.6.1.3. Общее уравнение плоскости

Если в уравнениях (39) или (44) раскрыть определители, то получим уравнение первой степени с тремя переменными, следовательно, в аффинной системе координат всякая плоскость может быть задана некоторым уравнением вида Ах + Ву + Сz + D = 0. Поставим обратную задачу: всякое ли уравнение вида Ах + Ву + Сz + D = 0 задаёт в аффинной системе координат некоторую плоскость.

Дано: R = , Ах + Ву + Сz + D = 0 (45), где коэффициенты А, В, С не все равны нулю.

Доказать: уравнение (45) задаёт плоскость.

Доказательство. Проведём доказательство, предполагая, что А  0. Если y = z = 0, то . Следовательно, координаты точкиМ0 (, 0, 0) удовлетворяют уравнению (45), т.е. если плоскость существует, то она обязательно пройдёт через эту точку. Векторыи, очевидно, не коллинеарны. Используя (39), составим уравнение плоскости, проходящей через точкуМ0 параллельно векторам и. Получим

После упрощения: Ах + Ву + Сz + D = 0, т.е. данное уравнение. Итак, (45) действительно задаёт плоскость.

Уравнение (45) называется общее уравнение плоскости.

Следствие. Если плоскость задана общим уравнением (45), то из векторов хотя бы два отличны от и неколлинеарны. Любой ненулевой вектор из них параллелен данной плоскости.