2.4. Преобразование аффинных координат на плоскости и в пространстве
Пусть R = {O, B} и R1 = {O1, B1} два аффинных репера, где В и В1 соответствующие базисы. Пусть Т – матрица перехода от базиса В к базису В1 и (х0к) – столбец координат точки О1 в репере R. Пусть М – произвольная точка, (хк) и (х1к) – столбцы её координат в реперах R и R1 соответственно. Тогда столбец координат вектора в базисеВ будет (хк х0к), а в базисе В1 – (х1к). Используя формулу связи координат вектора в разных базисах, получим
(хк х0к) = Т(хк1), или (хк) = Т(хк1) + (х0к).
Если эту формулу переписать в координатах (на плоскости координаты точки обозначим х, у, в пространстве х, у, z) , получим
на плоскости | в пространстве |
Так как матрица перехода всегда невырожденная, то определители этих формул отличны от нуля. Обратно, формулы () или () с определителем отличным от нуля всегда задают преобразование аффинных координат.
Задача 12. В параллелепипеде АВСDA1B1C1D1 точки М, Р, К заданы равенствами ,,. Запишите формулы преобразования координат, если системы координат заданы
заданы реперами R = {A, , , } и R1 = {М, , , }, где ,,,,,. Найдите «новые» координаты точкиВ и «старые» координаты точки К. Решение. Для решения первой части задачи нужно найти «старые» координаты точки М и векторов , , . Так как , тоМ(1, 0, )R. Для новых |
Рис. 23 |
координатных векторов:
, ,. Получим следующие формулы преобразования координат
«Новые» координаты точки К равны (0, 0, 1). Подставив их в полученные формулы вместо х1, у1, z1, получим х = 0, у = , z =. Итак, «старые» координаты точки К равны (0, , ). «Старые» координаты точки В(0, 1, 0). Подставив их в найденные формулы вместо x, y, z, получим «новые» координаты x1 = , у1 = , z1 = .
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература