4.3.9. Прямолинейные образующие поверхности
Определение 44. Прямая называется прямолинейной образующей поверхности, если она целиком лежит на поверхности.
Очевидно, любая плоскость имеет бесконечно много прямолинейных образующих. Цилиндрические и конические поверхности, согласно их определению, тоже имеют бесконечно много прямолинейных образующих. Эллипсоид не может иметь прямолинейных образующих, т.к. он заключён внутри параллелепипеда.
Теорема 1. Эллиптический параболоид не имеет прямолинейных образующих.
Доказательство. Пусть q: Прямая q будет целиком лежать на эллиптическом параболоиде, заданном уравнением (91), тогда и только тогда, когда уравнениеудовлетворяется при любом значении t. Преобразовав его, получим
. Этому уравнению удовлетворяет любое действительное число t тогда и только тогда, когда все его коэффициенты равны нулю, т.е. Отсюда следует, чтоm = n =р = 0, что невозможно, ибо m, n, р – координаты направляющего вектора прямой. Итак, никакая прямая не может целиком лежать на эллиптическом параболоиде.
Теорема 2. Двуполостный гиперболоид не имеет прямолинейных образующих.
Доказательство аналогично доказательству теоремы 1, проведите его самостоятельно.
Теорема 3. Однополостный гиперболоид имеет два бесконечных семейства прямолинейных образующих.
Доказательство. Пусть гиперболоид задан уравнением . Отсюда, илиЭто уравнение, а поэтому и данное уравнение эквивалентно как уравнению(), так и уравнению (). Обозначая в () каждую дробь через , получим, что уравнение (), а поэтому и уравнение гиперболоида, эквивалентно системе где пробегает все возможные действительные значения. Но при каждом значении эта система есть общие уравнения прямой. Так как любое действительное число, то получили бесконечное множество прямых, целиком покрывающих гиперболоид. Через каждую точку гиперболоида проходит точно одна из таких прямых.
Обозначая в () каждую дробь через , получим, что уравнение (), а поэтому и уравнение гиперболоида, эквивалентно системе где R. Но при каждом конкретном значении эта система есть общие уравнения прямой. Так как любое действительное число, то получили бесконечное множество прямых, целиком покрывающих гиперболоид. Через каждую точку гиперболоида проходит точно одна из таких прямых. Очевидно первое и второе множества прямых – различные.
Итак, на однополостном гиперболоиде укладываются два бесконечных семейства прямолинейных образующих.
Теорема 4. На гиперболическом параболоиде лежат два бесконечных семейства прямолинейных образующих.
Доказательство. Уравнение (38) можно преобразовать к виду
.
Это уравнение эквивалентно как уравнению (), так и уравнению (). Уравнение () эквивалентно системе . При любом эта система задаёт прямую. Получили семейство прямых, целиком покрывающих параболоид. Через каждую точку параболоида проходит точно одна прямая этого семейства.
Уравнение () эквивалентно системе Получили второе семейство прямых, целиком покрывающих параболоид. Через каждую точку параболоида проходит точно одна прямая этого семейства.
Итак, на поверхности гиперболического параболоида лежат два бесконечных семейства прямолинейных образующих.
Пример 5. Найдите прямолинейные образующие гиперболического параболоида
Х2 4У2 = Z,
проходящие через точку М(1, 2, 15).
Решение. Так как координаты точки М удовлетворяют данному уравнению, то эта точка лежит на данном параболоиде. Запишем данное уравнение в виде (Х 2У)(Х + 2У) = Z1, получим две пропорции и , каждая из которых эквивалентна данному уравнению. Эти пропорции, в свою очередь, эквивалентны соответственно системам уравнений() и (), где и любые действительные числа. Так как искомые образующие должны проходить через точку М, то координаты этой точки должны удовлетворять уравнениям этих образующих, т.е. иОтсюда = , = . Подставив их в () и (), получим
и . После преобразований получим общие уравнения двух образующих, проходящих через точкуМ:
и
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература