2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
Систему координат будем вводить параллельно на плоскости и в пространстве.
На плоскости Определение 15. Аффинным репером называется совокупность фиксированной точки и фиксированного базиса, т.е. R = . Точка О называется началом координат, векторы и координатными векторами. Точка О вместе с каждым координатным вектором определяет ось. Эти оси называются координатными осями и обозначаются (Ох) и (Оу) (рис. 20).
Рис. 20 Координатные оси разбивают плоскость на четыре угла. Их называют координатными углами. Координатные углы нумеруются в направлении кратчайшего поворота оси (Ох) к оси (Оу).
Говорят, что репер R = задаёт на плоскости систему аффинных координат.
Пусть М – произвольная точка плоскости. Вектор (рис. 21) называетсярадиусом- -вектором точки М (его часто обозначают одной буквой ).
Рис. 21 Между множеством всех точек плоскости и множеством всех компланарных векторов, которые можно отложить в этой плоскости, устанавливается взаимнооднозначное соответствие. Следовательно, радиус-вектор точки вполне определяет эту точку и называется её векторной координатой. Обозначение М(. В базисе , входящем в данный репер, векторзадаётся упорядоченной парой своих координат. Между множеством всех компланарных векторов и множеством всех упорядоченных пар действительных чисел тоже устанавливается взаимно однозначное соответствие. Итак, М {x, y}. Отсюда следует, что между множеством всех точек плоскости и множеством всех упорядоченных пар действительных чисел устанавливается взаимнооднозначное соответствие. Следовательно, любая точка плоскости вполне определяется упорядоченной парой действительных чисел. Определение 16. Аффинными координатами точки в репере R = называются координаты её радиуса-вектора в базисе, входящем в этот репер. М(х, у)R . Замечание. Если зафиксирован только один репер, то координаты точки можно обозначать М(х, у).
| В пространстве Определение 151. Аффинным репером называется совокупность фиксированной точки и фиксированного базиса, т.е. R = . Точка О называется началом координат, векторы ,и координатными векторами. Точка О вместе с каждым координатным вектором определяет ось. Эти оси называются координатными осями и обозначаются (Ох), (Оу) и (Оz) (рис. 201).
Рис. 201 Каждая пара координатных осей определяет плоскость. Их называют координатными плоскостями и обозначают (ХОУ), (ХОZ) и (УОZ). Координатные плоскости разбивают пространство на 8 трёхгранных углов. Их называют координатными углами. Говорят, что репер R = задаёт в пространстве систему аффинных координат.
Пусть М – произвольная точка пространства. Вектор (рис.211) называется радиусом-вектором точки М (его часто обозначают одной буквой ).
Рис.211 Между множеством всех точек плоскости и множеством всех геометрических векторов устанавливается взаимнооднозначное соответствие. Следовательно, радиус-вектор точки вполне определяет эту точку и называется её векторной координатой. Обозначение М(.
В базисе , входящем в данный репер, векторзадаётся упорядоченной тройкой своих координат. Между множеством всех геометрических векторов и множеством всех упорядоченных троек действительных чисел тоже устанавливается взаимно однозначное соответствие. Итак, М {x, y, z}. Отсюда следует, что между множеством всех точек пространства и множеством всех упорядоченных троек действительных чисел устанавливается взаимнооднозначное соответствие. Следовательно, любая точка пространства вполне определяется упорядоченной тройкой действительных чисел.
Определение 161. Аффинными координатами точки в репере R = называются координаты её радиуса-вектора в базисе, входящем в этот репер. М(х, у, z)R . Замечание. Если зафиксирован только один репер, то координаты точки можно обозначать М(х, у, z). |
Итак, введение аффинных координат позволяет каждую точку плоскости (пространства) характеризовать парой (тройкой) действительных чисел, т.е. перейти с геометрического языка на язык алгебры. Частным случаем аффинной системы координат является прямоугольная система координат.
Определение 17. Ортонормированным репером называется совокупность фиксированной точки и фиксированного ортонормированного базиса, т.е. на плоскости ( ив пространстве). Аффинная система координат (АСК), которая задаётся ортонормированным репером, называетсяпрямоугольной декартовой системой координат (ПДСК).
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература