1.5. Компланарные векторы
Определение 8. Векторы называются компланарными, если их можно отложить в одной плоскости.
Свойства компланарных векторов.
10. Коллинеарные векторы компланарны. Иными словами, во множество всех возможных компланарных между собой векторов вместе с каждым его вектором входят все векторы, коллинеарные с ним. В частности, нулевой вектор содержится в любом таком множестве и вместе с каждым вектором в это множество входит противоположный ему вектор. Отсюда же следует, что множество компланарных векторов замкнуто относительно операции умножения на действительное число.
20. Сумма двух векторов есть вектор, компланарный с ними. Следовательно, множество компланарных векторов замкнуто относительно операции сложения.
30. Три вектора компланарны тогда и только тогда, когда хотя бы один из них можно представить в виде линейной комбинации двух других.
Доказательство. Пусть векторы компланарны. Возможны два случая.
1) Среди данных векторов есть хотя бы одна пара коллинеарных векторов. Пусть иколлинеарны. Тогда, по свойствам коллинеарных векторов, хотя бы один из них можно выразить через другой. Пусть. Тогда, т.е. векторесть линейная комбинация векторови.
2) Данные векторы попарно не коллинеарны. Отложим их от одной точки О. Пусть ,,. Отрезки ОА, ОВ, ОС попарно не параллельны. Проведём СD ОА так, что D ОВ (прямой ОВ). Тогда получим , т.е. векторесть линейная комбинация векторови. |
Рис. 9 |
Пусть . По свойствам 10 и 20 следует, что вектор компланарен с векторамии.
40. Если векторы ине коллинеарны, то любой компланарный с ними вектор можно представить в виде их линейной комбинации.
Теорема 4. Множество всех компланарных векторов есть двумерное векторное пространство над полем действительных чисел. Базисом в нём является любая упорядоченная пара неколлинеарных векторов.
Доказательство следует из предыдущих свойств.
Задача 3. АВСD и AB1C1D1 два произвольных параллелограмма.
Докажите, что векторы ,,параллельны одной плоскости. Решение. Для решения задачи достаточно показать, что эти векторы компланарны. ; ; = = () + () = =. Так как, то эти векторы компланарны . |
Рис. 10 |
Теорема 5. Если векторы не компланарные, то любой геометрический вектор можно представить в виде их линейной комбинации.
Доказательство. Пусть векторы не компланарны. Очевидно, никакие два из них не являются коллинеарными. Пусть любой вектор. Возможны два случая.
1) Вектор компланарен с какой-нибудь парой данных векторов. Пусть компланарен с векторами и . Тогда по свойству 30 компланарных векторов .
2) Вектор не компланарен ни с одной парой данных векторов. Отложим все четыре вектора от одной точки О. пусть ,,и(рис. 11). Проведём (DM) (M (AOB)) и (MN) (N (OA)). Тогда . Ноколлинеарен вектору, поэтому. Аналогично,,. Следовательно,. |
Рис. 11 |
Теорема 6. Множество всех геометрических векторов есть трёхмерное векторное пространство над полем действительных чисел. Базисом в нём является любая упорядоченная тройка некомланарных векторов.
Доказательство следует из теоремы 5 и свойств компланарных векторов.
В курсе линейной алгебры (в первом семестре) введены координаты вектора в данном базисе и рассмотрены свойства координат. Все определения и свойства их будут использоваться в векторных пространствах геометрических векторов.
Если в векторном пространстве зафиксированы два базиса В и В1, Т – матрица перехода от базиса В к базису В1, х и х1 столбцы координат данного вектора в базисахВ и В1 соответственно, то х = Тх1. Если эти формулы переписать в координатах во множестве компланарных векторов, то получим
где ,.
Во множестве всех геометрических векторов
где ,,
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература