4.1.4. Парабола
Определение 34. Параболой называется множество всех точек плоскости, каждая из которых равноудалёна от данной точки и от данной прямой (данная точка не лежит на данной прямой).
Данная точка F называется фокусом параболы, а данная прямая t – её директрисой.
Выберем прямоугольную систему координат так, чтобы ось (ОХ) проходила через фокус перпендикулярно директрисе в сторону от директрисы к фокусу. За начало координат возьмём середину отрезка между директрисой и фокусом (рис. 71). М параболе FМ = d(М, t) (). Обозначим d(F, t) = р. Тогда F(и прямая t |
Рис. 71 |
будет иметь уравнение х = . Равенство () перепишется . Получили уравнение параболы. Так как обе части равенства неотрицательны, то возведение в квадрат даст эквивалентное уравнение
у2 = 2рх (61).
Полученное уравнение называется каноническим уравнением параболы. В этом уравнении р 0. Из уравнения (61) следуют свойства:
парабола лежит в той полуплоскости с границей (ОУ), в сторону которой направлена ось (ОХ); парабола симметрична относительно оси (ОХ); при х у ; парабола проходит через начало координат и не имеет других точек пересечения с осями координат. Начало координат называется вершиной параболы. |
Рис. 72 |
Если М0(х0, у0) параболе, то уравнение касательной к параболе в этой точке имеет вид уу0 = р(х + х0).
Теорема 7. Любые две параболы подобны.
Доказательство. Пусть у2 = 2рх и у2 = 2р1х две параболы. Пусть у = кх – любая прямая, проходящая через начало координат. Пусть эта прямая пересекает параболы в точках М и . Тогда, если прямая проходит в первом координатном углу, то М(х1,),(х2, ). Так какМ и лежат на данной прямой, то у1 = кх1, у2 = кх2. Следовательно, ,,, |
Рис. 73 |
. Отсюда , т.е. параболы подобны с коэффициентом подобия.
Замечание 1. Если вершиной параболы является точка С(х0, у0) и ось параболы параллельна оси (ОХ), то парабола имеет уравнение
(у – у0)2 = 2р(х – х0).
Замечание 2. Если в уравнении (7) р 0, то парабола располагается в той полуплоскости с границей (ОУ), в которой лежит отрицательная полуось (ОХ). Уравнение х2 = 2ру при любом р задаёт параболу, симметричную относительно оси (ОУ).
Общие свойства эллипса, гиперболы и параболы описывает следующая
Теорема 8. Для любых данных прямой t и точки F (F t) множество точек, отношение расстояний от каждой из которых до данной точки и до данной прямой есть постоянная величина , есть либо эллипс, либо гипербола, либо парабола.
- Аналитическая геометрия
- I. Элементы векторной алгебры
- 1.1. Геометрические векторы
- 1.2. Сложение векторов
- 1.3. Умножение вектора на действительное число
- 1.4. Коллинеарные векторы
- 1.5. Компланарные векторы
- 1.6. Проекция на прямую параллельно данной плоскости
- 1.7. Проекция вектора на ось
- 1.8. Ортогональная проекция вектора на ось
- 1.9. Скалярное произведение векторов
- 1.10. Векторное произведение векторов
- 1.15. Смешанное произведение векторов
- II. Метод координат на плоскости и в пространстве
- 2.1 Введение системы аффинных и прямоугольных координат на плоскости и в пространстве
- 2.2. Аффинные задачи на плоскости и в пространстве
- 2.2.1. Координаты вектора, заданного координатами его концов.
- 2.3. Метрические задачи на плоскости и в пространстве .
- 2.3.1. Расстояние между точками.
- 2.3.2. Угол, заданный тремя точками.
- 2.4. Преобразование аффинных координат на плоскости и в пространстве
- 2.5. Преобразование прямоугольных координат на плоскости
- 2.6. Полярные координаты на плоскости
- 2.7. Цилиндрические и сферические координаты в пространстве
- III. Образы первой ступени
- 3.1. Условия, определяющие фигуру в системе координат
- 3.2. Прямая в аффинной системе координат на плоскости и в пространстве
- 3.2.1. Уравнения прямой, проходящей через данную точку параллельно данному вектору
- 3.2.2. Уравнения прямой, проходящей через две точки
- 3.2.3. Общие уравнения прямой
- I.Общее уравнение прямой на плоскости
- 2. Общие уравнения прямой в пространстве
- 3.2.4. Исследование взаимного расположения прямых
- 3.3. Прямая в прямоугольной системе координат на плоскости
- 3.3.1. Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- 3.3.2. Уравнение прямой, проходящей через данную точку под данным углом к оси (Ох)
- 3.3.3. Нормальное уравнение прямой
- 3.3.4. Угол между двумя прямыми, заданными общими уравнениями
- 3.3.5. Угол между наклонными прямыми, заданными уравнениями с угловыми коэффициентами
- 3.3.6. Расстояние от точки до прямой
- 3.4. Пучок прямых на плоскости
- 3.6. Прямая и плоскость в пространстве
- 3.6.1. Плоскость в аффинной системе координат
- 3.6.1.1. Уравнения плоскости, проходящей через данную точку параллельно двум данным векторам
- 3.6.1.2.. Уравнения плоскости, проходящей через три данные неколлинеарные точки
- 3.6.1.3. Общее уравнение плоскости
- 3.6.1.4. Исследование взаимного расположения двух плоскостей
- 3.6.2. Плоскость и прямая в прямоугольной системе координат
- 3.6.2.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
- 3.6.2.2. Угол между двумя плоскостями
- 3.6.2.3. Угол между прямой и плоскостью
- 3.6.2.4. Расстояние от точки до плоскости
- 3.6.2.5. Расстояние от точки до прямой
- 3.6.2.6. Расстояние между скрещивающимися прямыми
- IV. Образы второго порядка
- 4.1. Элементарная теория линий второго порядка
- 4.1.1. Окружность
- 4.1.2. Эллипс
- 4.1.3. Гипербола
- 4.1.4. Парабола
- 4.1.5. Эллипс, гипербола и парабола в полярных координатах
- 4.2. Упрощение уравнения линии второго порядка
- 4.2.1. Преобразование уравнения линии второго порядка при повороте прямоугольной системы координат
- 4.2.2. Упрощение уравнения линии второго порядка. Метрическая классификация линий второго порядка
- 4.3. Поверхности
- 4.3.1. Цилиндрические поверхности
- 4.3.2. Конические поверхности
- 4.3.3. Поверхности вращения
- 4.3.4. Эллипсоид
- 4.3.5. Однополостный гиперболоид
- 4.3.6. Двуполостный гиперболоид
- 4.3.7. Эллиптический параболоид
- 4.3.8. Гиперболический параболоид
- 4.3.9. Прямолинейные образующие поверхности
- V. Расширенные евклидовы плоскость и пространство
- 5.1. Определение расширенных евклидовых плоскости и пространства
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 5.3. Уравнения прямой, точки и линий второго порядка в однородных координатах на расширенной евклидовой плоскости
- 5.4. Однородные координаты в расширенном евклидовом пространстве
- 5.5. Уравнения плоскости и прямой в однородных координатах
- Задачи по аналитической геометрии для домашних заданий
- Метод координат на плоскости и в пространстве
- Lll. Прямая линия на плоскости
- LV. Плоскость и прямая в пространстве
- V. Элементарная теория кривых второго порядка
- Vl. Элементарная теория поверхностей
- Vll. Другие системы координат на плоскости и в пространстве
- Основная литература