Теорема о центральном сечении
Пусть задана функция двух переменных f(x, y) и для нее определены:
- двумерное преобразование Фурье F(x, y),
- преобразование Радона R(s,),
- преобразование Фурье R( от радоновского образа R(s,).
Покажем, что
.
Представим функцию в следующем виде:
.
Поменяем порядок интегрирования. В результате получим
.
После интегрирования переменной s (используем фильтрующее свойство дельта-функции):
.
Обозначим
.
В этом случае
.
И нтеграл в правой части этого выражения ни что иное, как двумерное преобразование Фурье функции f(x y). Таким образом
.
Мы получили соотношение, которое связывает между собой преобразование Фурье радоновского образа функции с ее двумерным Фурье спектром. Это соотношение и называется теоремой о центральном сечении. Функция представляет собой поверхность в пространстве (x, y). Функция представляет собой сечение этой поверхности плоскостью проходящей через начало системы координат, перпендикулярной плоскости X0Y и направленной под углом к оси x.
-
Yandex.RTB R-A-252273-3
Содержание
- Основные понятия курса. Оптическая и неоптическая голография
- Что такое изображение
- Методы восстановления изображений
- Методы реконструкции изображений
- Другие методы цифровой обработки изображений
- Оптическая голография. Регистрация интерференционной картины.
- Оптическая схема получения голограммы.
- Неоптическая голография
- Математический аппарат решения задач восстановления и реконструкции изображений
- Дельта-функция
- Свойства дельта-функции
- Преобразование Фурье. Теорема о свёртке
- Линейные системы. Импульсный отклик линейной системы
- Прямые и обратные задачи. Уравнение Фредгольма
- Решение уравнения типа свёртки. Частотная характеристика
- Корректность решения обратной задачи. Существования решения
- Единственность решения на примере уравнения типа свертки
- Устойчивость решения
- Регуляризация решени обратных задач
- Регуляризация решения. Метод регуляризации Тихонова
- Регуляризация решения уравнения типа свертки
- Фильтр Тихонова. Невязка
- Оптимальный фильтр Винера
- Управляемая линейная фильтрация. Фильтр Бэйкуса-Гильберта
- Гомоморфная фильтрация
- Метод неопределенных коэффициентов
- Пример решения обратной задачи
- Коррекция искажений, вызванных равномерным прямолинейным движением объекта
- Коррекция искажений, вызванных равномерным прямолинейным движением объекта. Учет граничных условий
- Разрешающая способность систем формирования изображений
- Понятие о разрешающей способности
- Теоретическая оценка разрешающей способности на примере анализатора спектра
- Представление Релея для монохроматических волн
- Представление Релея для немонохроматических волн
- Двойной физический смысл пространственной частоты
- Частотная характеристика свободного пространства
- Угловой спектр сферической волны
- Импульсный отклик свободного пространства
- Восстановление радиоголографических изображений
- Алгоритм восстановления изображений в частотной области
- Восстановление изображений в приближении Френеля
- Азимутальное разрешение радиоголографической системы
- Синтез апертуры сканированием одной антенной
- Синтез апертуры сканирования двумя антеннами
- Синтез радиоголограмм динамических объектов
- Разрешающая способность в радиальном направлении
- Многочастотная голография
- Основы томографии
- Прохождение плоскопараллельного пучка через среду с поглощением
- Преобразование Радона
- Преобразование Радона точечного объекта
- Теорема о центральном сечении
- Обратное преобразование Радона
- Алгоритм обратного проецирования
- Вычисление обратного преобразования Радона
- Итерационные алгоритмы решения обратных задач
- Понятие об итерационных алгоритмах решения обратных задач
- Итерационные алгоритмы с ограничениями
- Итерационное уравнение
- Ряд Неймана
- Итерационный оператор для уравнения типа свертки