Оптическая голография. Регистрация интерференционной картины.
Голография (от греческого, Όλος—holos — полный + γραφή—graphe — запись) — набор технологий для точной записи, воспроизведения и переформирования волновых полей.
Данный метод был предложен в 1948 г. Дэннисом Габором, он же ввёл термин голограмма и получил «за изобретение и развитие голографического принципа» Нобелевскую премию по физике в 1971 г.
Интерференция двух плоских волн.
Когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают, возникает стоячая электромагнитная волна. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В области стоячей электромагнитной волны размещают фотопластинку (или иной регистрирующий материал), в результате на этой пластинке возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует эту волну в волну, близкую к объектной. Таким образом, мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи.
При записи голограммы крайне важно, чтобы длины (частоты) объектной и опорной волн с максимальной точностью совпадали друг с другом и не менялись в течение всего времени записи (иначе на пластинке не запишется чёткой картины интерференции). Этого можно добиться только при выполнении двух условий:
1. обе волны изначально испущены одним источником
2. этот источник испускает электромагнитное излучение с очень стабильной длиной волны (когерентное излучение)
Крайне удобным источником света, хорошо удовлетворяющим второму условию, является лазер. До изобретения лазеров голография практически не развивалась (вместо лазера использовали очень узкие линии в спектре испускания газоразрядных ламп, что сильно затрудняет эксперимент). На сегодняшний день голография предъявляет одни из самых жестких требований к когерентности лазеров.
Чаще всего когерентность принято характеризовать длиной когерентности — той разности оптических путей двух волн, при которой контраст интерференционной картины уменьшается в два раза по сравнению с интерференционной картиной, которую дают волны, прошедшие от источника одинаковое расстояние. Для различных лазеров длина когерентности может составлять от долей миллиметра (мощные лазеры, предназначенные для сварки, резки и других применений, не требовательных к этому параметру) до десятков метров (специальные, так называемые одночастотные, лазеры для требовательных к когерентности применений).
Интерференционный член
Yandex.RTB R-A-252273-3
- Основные понятия курса. Оптическая и неоптическая голография
- Что такое изображение
- Методы восстановления изображений
- Методы реконструкции изображений
- Другие методы цифровой обработки изображений
- Оптическая голография. Регистрация интерференционной картины.
- Оптическая схема получения голограммы.
- Неоптическая голография
- Математический аппарат решения задач восстановления и реконструкции изображений
- Дельта-функция
- Свойства дельта-функции
- Преобразование Фурье. Теорема о свёртке
- Линейные системы. Импульсный отклик линейной системы
- Прямые и обратные задачи. Уравнение Фредгольма
- Решение уравнения типа свёртки. Частотная характеристика
- Корректность решения обратной задачи. Существования решения
- Единственность решения на примере уравнения типа свертки
- Устойчивость решения
- Регуляризация решени обратных задач
- Регуляризация решения. Метод регуляризации Тихонова
- Регуляризация решения уравнения типа свертки
- Фильтр Тихонова. Невязка
- Оптимальный фильтр Винера
- Управляемая линейная фильтрация. Фильтр Бэйкуса-Гильберта
- Гомоморфная фильтрация
- Метод неопределенных коэффициентов
- Пример решения обратной задачи
- Коррекция искажений, вызванных равномерным прямолинейным движением объекта
- Коррекция искажений, вызванных равномерным прямолинейным движением объекта. Учет граничных условий
- Разрешающая способность систем формирования изображений
- Понятие о разрешающей способности
- Теоретическая оценка разрешающей способности на примере анализатора спектра
- Представление Релея для монохроматических волн
- Представление Релея для немонохроматических волн
- Двойной физический смысл пространственной частоты
- Частотная характеристика свободного пространства
- Угловой спектр сферической волны
- Импульсный отклик свободного пространства
- Восстановление радиоголографических изображений
- Алгоритм восстановления изображений в частотной области
- Восстановление изображений в приближении Френеля
- Азимутальное разрешение радиоголографической системы
- Синтез апертуры сканированием одной антенной
- Синтез апертуры сканирования двумя антеннами
- Синтез радиоголограмм динамических объектов
- Разрешающая способность в радиальном направлении
- Многочастотная голография
- Основы томографии
- Прохождение плоскопараллельного пучка через среду с поглощением
- Преобразование Радона
- Преобразование Радона точечного объекта
- Теорема о центральном сечении
- Обратное преобразование Радона
- Алгоритм обратного проецирования
- Вычисление обратного преобразования Радона
- Итерационные алгоритмы решения обратных задач
- Понятие об итерационных алгоритмах решения обратных задач
- Итерационные алгоритмы с ограничениями
- Итерационное уравнение
- Ряд Неймана
- Итерационный оператор для уравнения типа свертки