Прямокутні координати вектора в просторі
Координатами вектора називається проекція вектора на осі координат.
Нехай вектор має координати , тобто
= ( ) і утворює з осями координат кути , тоді ; ;
- називаються напрямними косинусами вектора . Для напрямних косинусів вектора виконується рівність
Координати вектора дорівнюють різниці відповідних координат кінця та початку вектора.
Наприклад, вектор , початок якого знаходиться в точці A(2;-3;0), а кінець – в точці B(1;1;2) має координати
= (1 – 2; 1 + 3; 2 – 0 ) = ( -1;4;2).
Радіус вектора ,де точка О–початок координат позначають .
Модуль або довжина радіус-вектора r =
Одиночні вектори координатних осей , називається ортами
Вправи
Дано три послідовні вершини паралелограма
А(1;-2;3); В(3;2;1); С(6;4;4). Знайти його четверту вершину D.
Задані точки А(1;2;3) та В(3;-4;6). Треба:
Знайти координати вектора ;
Знайти та косинуси кутів , що утворює вектор з осями координат.
- Заступник директора з розглянуто
- Пояснювальна записка
- Тематичний план
- Визначник
- Властивості визначників
- Система лінійних рівнянь
- Питання для самоконтролю.
- Векторна алгебра Додавання векторів. Множення вектора на скаляр
- Прямокутні координати вектора в просторі
- Скалярний добуток двох векторів
- Векторний добуток векторів
- Рівняння прямої у просторі
- Пряма на площині
- Питання для самоконтролю.
- Криві іі-го порядку
- Гіпербола.
- Парабола.
- Питання для самоконтролю.
- Вступ до аналізу Комплексні числа
- Питання для самоконтролю
- Змінні величини і функції
- Границі послідовності та функції. Нескінченно малі та нескінченно великі
- Границя відношення при
- Порівняння нескінченно малих функцій
- Неперервність функції
- Асимптоти
- Геометричний і механічний зміст похідної. Рівняння дотичної та нормалі до графіків функції
- Диференціал функції
- Похідні і диференціали вищих порядків
- Застосування похідних до дослідження функцій Теореми про середнє значення
- Правило Лопіталя
- Зростання і спадання функції. Екстремум.
- Необхідна умова існування екстремуму.
- Достатні умови існування екстремуму.
- Питання для самоконтролю
- Інтегрування підстановкою та безпосередньо
- Інтегрування по частинах
- Інтеграли виду Вправи
- Інтегрування раціональних алгебраїчних функцій
- Інтегрування дуяких ірраціональних алгебраїчних функцій
- Інтегрування тригонометрчних функцій
- Питання для самоконтролю
- Визначений інтеграл
- Обчислення площ
- Об’єм тіла обертання
- Обчислення довжини дуги кривої
- Питання для самоконтролю
- Диференційні рівняння першого порядку
- Однорідні диференційні рівняння першого порядку
- Лінійні диференційні рівняння першого порядку
- Лінійні диференційні рівняння другого порядку
- Питання для самоконтролю
- Формула і ряд Тейлора та їх застосування
- Питання для самоконтролю
- Рекомендована література