2.5 Определение силы по ее проекциям на координатные оси
Если сила и ось проекций заданы, то проекция силы на ось определяется единственным образом. Но задание одной проекции силы еще не определяет саму силу, так как различные силы могут иметь одинаковые проекции на одну и ту же ось (рисунок32, а)-
Если линия действия силы расположена в координатной плоскости Оху (рисунок 32, б), то для определения этой силы нужно знать ее проекции и на две прямоугольные декартовы оси координат Ох и Оу (аналитический способ задания силы). В этом случае модуль силы численно равен диагонали прямоугольника, длины сторон которого численно равны абсолютным значениям проекций на координатные осиОх и Оу. Отсюда следует, что модуль силы равен
, (1) где перед корнем всегда надо брать знак "плюс", так как модуль силы есть число арифметическое.
Направление силы определяется из равенств:
;. (2)
Покажем теперь, что сила будет вполне определена, если будут известны ее проекции ,,,на три прямоугольные декартовы оси координат Ох, Оу и Оz (рисунок 33). В самом деле, из формулы (1, §7) следует, что
;;. (3)
Отсюда находим косинусы углов между вектором силы и положительными направлениями осей проекций:
;;, (4) которые называютсянаправляющими косинусами.
Возводя равенства (3) почленно в квадрат и складывая их, находим модуль силы по формуле:
, (5)
так как
. (6)
Формулы (4) и (5) позволяют, зная проекции силы на оси координат, найти ее углы с осями и модуль, т. е. определить силу. Заметим, что в формуле (5) перед корнем всегда берется знак "плюс", так как эта формула определяет модуль силы.
Из формулы (6) следует, что из трех направляющих косинусов независимыми являются только два. Поэтому нельзя задавать произвольно три угла , и образуемых силой с координатными осями Ох, Оу и Оz.
Докажем теперь следующую теорему о проекции равнодействующей на ось: проекция равнодействующей системы сходящихся сил (безразлично, пространственной или плоской) на какую-либо ось равна алгебраической сумме : проекций составляющих сил на ту же ось.
В самом деле, положим, что на точку А тела одновременно действуют сходящиеся силы , ,,…, (рисунок 34). Найдем их равнодействующую по правилу силового многоугольника.
Спроектируем силы , ,…, и их равнодействующую на данную ось х:
;;;;;.
Сложив последние пять равенств, находим
, или
, чем и доказывается теорема.
Данная теорема справедлива при любом числе сил, поэтому аналогично получим
, или
(7)
- Раздел I. Статика
- Глава 1. Основные понятия и аксиомы статики
- Введение: предмет, метод, место среди естественных наук и границы применимости теоретической механики
- 1.2 Сила, система сил, эквивалентная система сил и уравновешенная система сил
- 1.3 Аксиомы статики и некоторые следствия из них
- 1.4 Исследование связей и установление направления их реакций
- Глава 2. Приведение пространственной и плоской систем сходящихся сил к равнодействующей
- 2.1 Геометрический метод определения равнодействующей
- Пространственной и плоской систем сходящихся сил
- 2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
- 2.3 Разложение силы на сходящиеся составляющие
- 2.4 Проекции силы на ось и на плоскость
- 2.5 Определение силы по ее проекциям на координатные оси
- 2.6 Аналитический метод определения равнодействующей пространственной и плоской систем сходящихся сил
- 2.7 Условия равновесия пространственной и плоской систем сходящихся сил в аналитической форме. Указания к решению задач
- 2.8. Момент силы относительно точки. Теорема Вариньона о моменте равнодействующей
- Глава 3. Система параллельных сил и теория пар, как угодно расположенных в одной плоскости
- 3.1 Приведение систем двух параллельных сил, направленных
- В одну сторону, к равнодействующей
- 3.2 Приведение системы двух неравных по модулю параллельных сил, направленных в противоположные стороны, к равнодействующей
- 3.3 Пара сил. Момент пары сил
- 3.4 Эквивалентность пар
- 3.5 Сложение пар, расположенных в одной плоскости. Условие равновесия пар
- Глава 4. Произвольная плоская система сил
- 4.1 Теорема о параллельном переносе силы. (Метод Пуансо)
- 4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
- 4.3 Приведение произвольной плоской системы сил к равнодействующей
- 4.4 Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил. Условие равновесия рычага
- 4.5 Приведение произвольной плоской системы сил к одной паре
- 4.6 Условия равновесия произвольной плоской системы сил
- 4.7 Условия равновесия плоской системы параллельных сил
- 4.8 Указания к решению задач
- 4.9 Равновесие сочлененной системы тел
- Глава 5. Трение скольжения и качения
- 5.1 Трение скольжения
- 5.2 Трение качения
- 5.3 Понятие о ферме
- 5.4 Способ вырезания узлов
- 5.5. Способ разрезов фермы
- Глава 6. Произвольная пространственная система сил и теория пар, как угодно расположенных в пространстве
- 6.1 Момент силы относительно точки как вектор
- 6.2 Момент силы относительно оси
- 6.3. Зависимость между моментом силы относительно оси и моментом силы относительно точки, лежащей на этой оси
- 6.4 Аналитическое выражение моментов силы относительно координатных осей
- 6.5 Теорема о переносе пары в другую плоскость, параллельную плоскости действия этой пары
- 6.6 Момент пары как вектор
- 6.7 Условие эквивалентности двух пар
- 6.8 Сложение пар, лежащих в разных плоскостях. Условие равновесия пар
- 6.9 Приведение произвольной пространственной системы сил к одной силе и к одной паре
- 6.10 Изменение главного вектора-момента при перемене центра приведения
- 6.11 Инварианты произвольной пространственной системы сил
- 6.12 Приведение произвольной пространственной системы сил к динамическому винту
- 6.13 Случай приведения системы сил, не лежащих в одной плоскости, к равнодействующей. Теорема Вариньона о моменте равнодействующей
- 6.14 Случай приведения системы сил, не лежащих в одной плоскости, к паре
- 6.15 Условия равновесия произвольной пространственной системы сил. Случай пространственной системы параллельных сил
- 6.16 Равновесие твердого тела с одной и с двумя закрепленными точками. Указания к решению задач
- Глава 7. Центр тяжести
- 7.1 Приведение системы параллельных сил к равнодействующей. Центр параллельных сил
- 7.2 Центр тяжести
- 7.3 Способы определения координат центров тяжести тел
- 7.4 Центр тяжести некоторых линий, площадей и объемов
- 7.5 Графическое определение положения центра тяжести плоских фигур