2.3 Разложение силы на сходящиеся составляющие
Разложить данную силу на две или несколько сходящихся составляющих сил значит найти такую систему двух или нескольких сходящихся сил, для которой данная сила является равнодействующей.
Разложение силы по двум заданным направлениям. Пусть, например, требуется разложить на две сходящиеся силы силу , модуль и направление которой заданы. Возьмем два произвольных направления ОМ и ОN и построим вектор , изображающий в некотором масштабе данную силу . Из точки А проведем прямые АВ и АС, соответственно параллельные прямым ОN и ОМ (рисунок 28). Получается параллелограмм ОВАС, для которого сила является диагональю. Векторы и дают в том же масштабе составляющие силы, равнодействующая которых равна .
Взяв два других произвольных направления и и аналогичным образом построив новый параллелограмм , мы получим другие составляющие силы и, дающие в сумме ту же самую равнодействующую.
Таким образом, по данной силе, очевидно, можно построить бесчисленное множество параллелограммов сил, и, следовательно, задача о разложении данной силы на две сходящиеся составляющие силы является в такой постановке неопределенной и имеет однозначное решение лишь при задании двух дополнительных условий.
Такими дополнительными условиями могут, например, быть: 1) задание двух направлений, по которым должны действовать составляющие; 2) задание модулей обеих составляющих сил; 3) задание модуля одной составляющей силы и направление другой.
Рассмотрим первый случай. Разложим заданную силу (рисунок 28) на две сходящиеся составляющие силы по направлениям, параллельным данным прямым ОN и ОМ (линия действия силы и эти прямые лежат в одной плоскости). Задача сводится к построению такого параллелограмма, у которого диагональ будет изображать силу , а стороны будут параллельны прямым ОМ и ОN. Для решения задачи проводим через начало и конец вектора силы прямые, параллельные ОN и ОМ. При этом стороны таким образом построенного параллелограмма ОВ и ОС, направление которых совпадает с заданными направлениями искомых составляющих сил, дадут нам эти искомые составляющие силы в том же масштабе, в каком отложена данная сила .
Два последних случая предоставляем читателю рассмотреть самостоятельно.
Разложение силы по трем заданным направлениям. Исходя из правила параллелепипеда сил, можно решить задачу о разложении данной силы на три сходящиеся силы по трем заданным направлениямОN, ОМ и OL, не лежащим в одной плоскости (рисунок 29). Для этого, очевидно, достаточно построить параллелепипед, ребра которого ОА, ОВ и ОС имели бы заданные направления, а диагональю ОD являлась бы заданная сила . При этом ребра этого параллелепипеда ОА, ОВ и ОС дадут нам модули искомых составляющих данной силы в том же масштабе, в каком отложена сила .
Yandex.RTB R-A-252273-3- Раздел I. Статика
- Глава 1. Основные понятия и аксиомы статики
- Введение: предмет, метод, место среди естественных наук и границы применимости теоретической механики
- 1.2 Сила, система сил, эквивалентная система сил и уравновешенная система сил
- 1.3 Аксиомы статики и некоторые следствия из них
- 1.4 Исследование связей и установление направления их реакций
- Глава 2. Приведение пространственной и плоской систем сходящихся сил к равнодействующей
- 2.1 Геометрический метод определения равнодействующей
- Пространственной и плоской систем сходящихся сил
- 2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
- 2.3 Разложение силы на сходящиеся составляющие
- 2.4 Проекции силы на ось и на плоскость
- 2.5 Определение силы по ее проекциям на координатные оси
- 2.6 Аналитический метод определения равнодействующей пространственной и плоской систем сходящихся сил
- 2.7 Условия равновесия пространственной и плоской систем сходящихся сил в аналитической форме. Указания к решению задач
- 2.8. Момент силы относительно точки. Теорема Вариньона о моменте равнодействующей
- Глава 3. Система параллельных сил и теория пар, как угодно расположенных в одной плоскости
- 3.1 Приведение систем двух параллельных сил, направленных
- В одну сторону, к равнодействующей
- 3.2 Приведение системы двух неравных по модулю параллельных сил, направленных в противоположные стороны, к равнодействующей
- 3.3 Пара сил. Момент пары сил
- 3.4 Эквивалентность пар
- 3.5 Сложение пар, расположенных в одной плоскости. Условие равновесия пар
- Глава 4. Произвольная плоская система сил
- 4.1 Теорема о параллельном переносе силы. (Метод Пуансо)
- 4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
- 4.3 Приведение произвольной плоской системы сил к равнодействующей
- 4.4 Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил. Условие равновесия рычага
- 4.5 Приведение произвольной плоской системы сил к одной паре
- 4.6 Условия равновесия произвольной плоской системы сил
- 4.7 Условия равновесия плоской системы параллельных сил
- 4.8 Указания к решению задач
- 4.9 Равновесие сочлененной системы тел
- Глава 5. Трение скольжения и качения
- 5.1 Трение скольжения
- 5.2 Трение качения
- 5.3 Понятие о ферме
- 5.4 Способ вырезания узлов
- 5.5. Способ разрезов фермы
- Глава 6. Произвольная пространственная система сил и теория пар, как угодно расположенных в пространстве
- 6.1 Момент силы относительно точки как вектор
- 6.2 Момент силы относительно оси
- 6.3. Зависимость между моментом силы относительно оси и моментом силы относительно точки, лежащей на этой оси
- 6.4 Аналитическое выражение моментов силы относительно координатных осей
- 6.5 Теорема о переносе пары в другую плоскость, параллельную плоскости действия этой пары
- 6.6 Момент пары как вектор
- 6.7 Условие эквивалентности двух пар
- 6.8 Сложение пар, лежащих в разных плоскостях. Условие равновесия пар
- 6.9 Приведение произвольной пространственной системы сил к одной силе и к одной паре
- 6.10 Изменение главного вектора-момента при перемене центра приведения
- 6.11 Инварианты произвольной пространственной системы сил
- 6.12 Приведение произвольной пространственной системы сил к динамическому винту
- 6.13 Случай приведения системы сил, не лежащих в одной плоскости, к равнодействующей. Теорема Вариньона о моменте равнодействующей
- 6.14 Случай приведения системы сил, не лежащих в одной плоскости, к паре
- 6.15 Условия равновесия произвольной пространственной системы сил. Случай пространственной системы параллельных сил
- 6.16 Равновесие твердого тела с одной и с двумя закрепленными точками. Указания к решению задач
- Глава 7. Центр тяжести
- 7.1 Приведение системы параллельных сил к равнодействующей. Центр параллельных сил
- 7.2 Центр тяжести
- 7.3 Способы определения координат центров тяжести тел
- 7.4 Центр тяжести некоторых линий, площадей и объемов
- 7.5 Графическое определение положения центра тяжести плоских фигур