2.4 Проекции силы на ось и на плоскость
Проекция силы на ось. Аналитический метод решения задач статики основан на понятии о проекции силы на ось.
Пусть мы имеем силу, приложенную в точке А тела, и некоторую ось х, положительное направление которой будем считать от точки а в ту сторону, где стоит буква х. Предположим, что линия действия силы и ось х лежат в одной плоскости (проекция силы на ось, расположенную любым образом, находится аналогично).
Опустим из начала и конца вектора силы на ось х перпендикуляры Аа и Вb (рисунок 30, а). Взятая с соответствующим знаком длина отрезка аb называется проекцией силы на ось х.
Проекция силы имеет знак "плюс", если перемещение от ее начала к концу происходит в положительном направлении оси (рисунок 30, а), и знак "минус", если в отрицательном (рисунок 30, б). Из этого определения следует, что проекция силы на ось является величиной скалярной.
Проекцию силы на ось будем обозначать той же буквой, которой обозначена сила, но со знаком внизу, указывающим наименование оси проекций (например, и, или прописной буквой и).
Таким образом,
;.
Если провести через начало вектора силы прямую , параллельную оси х, то легко видеть, что
,
Отсюда
,, (1) т. е.проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным направлением, оси проекций.
Проекция силы на плоскость. Проекцией силы на плоскость Oxy называется вектор , заключенный между проекциями начала и конца вектора силы на эту плоскость (рисунок 31). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим численным значением, но и направлением в плоскости Oxy. Модуль проекции силы на плоскость определяется по формуле
где – угол между направлением вектора силы и ее проекции на плоскость Oxy.
Заметим, что для нахождения проекции силы , например на ось х, можно сначала найти ее проекцию на плоскость Oxy, в которой эта ось лежит, а затем найденную проекцию на плоскость . спроектировать на данную ось:
.
Yandex.RTB R-A-252273-3
- Раздел I. Статика
- Глава 1. Основные понятия и аксиомы статики
- Введение: предмет, метод, место среди естественных наук и границы применимости теоретической механики
- 1.2 Сила, система сил, эквивалентная система сил и уравновешенная система сил
- 1.3 Аксиомы статики и некоторые следствия из них
- 1.4 Исследование связей и установление направления их реакций
- Глава 2. Приведение пространственной и плоской систем сходящихся сил к равнодействующей
- 2.1 Геометрический метод определения равнодействующей
- Пространственной и плоской систем сходящихся сил
- 2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
- 2.3 Разложение силы на сходящиеся составляющие
- 2.4 Проекции силы на ось и на плоскость
- 2.5 Определение силы по ее проекциям на координатные оси
- 2.6 Аналитический метод определения равнодействующей пространственной и плоской систем сходящихся сил
- 2.7 Условия равновесия пространственной и плоской систем сходящихся сил в аналитической форме. Указания к решению задач
- 2.8. Момент силы относительно точки. Теорема Вариньона о моменте равнодействующей
- Глава 3. Система параллельных сил и теория пар, как угодно расположенных в одной плоскости
- 3.1 Приведение систем двух параллельных сил, направленных
- В одну сторону, к равнодействующей
- 3.2 Приведение системы двух неравных по модулю параллельных сил, направленных в противоположные стороны, к равнодействующей
- 3.3 Пара сил. Момент пары сил
- 3.4 Эквивалентность пар
- 3.5 Сложение пар, расположенных в одной плоскости. Условие равновесия пар
- Глава 4. Произвольная плоская система сил
- 4.1 Теорема о параллельном переносе силы. (Метод Пуансо)
- 4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
- 4.3 Приведение произвольной плоской системы сил к равнодействующей
- 4.4 Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил. Условие равновесия рычага
- 4.5 Приведение произвольной плоской системы сил к одной паре
- 4.6 Условия равновесия произвольной плоской системы сил
- 4.7 Условия равновесия плоской системы параллельных сил
- 4.8 Указания к решению задач
- 4.9 Равновесие сочлененной системы тел
- Глава 5. Трение скольжения и качения
- 5.1 Трение скольжения
- 5.2 Трение качения
- 5.3 Понятие о ферме
- 5.4 Способ вырезания узлов
- 5.5. Способ разрезов фермы
- Глава 6. Произвольная пространственная система сил и теория пар, как угодно расположенных в пространстве
- 6.1 Момент силы относительно точки как вектор
- 6.2 Момент силы относительно оси
- 6.3. Зависимость между моментом силы относительно оси и моментом силы относительно точки, лежащей на этой оси
- 6.4 Аналитическое выражение моментов силы относительно координатных осей
- 6.5 Теорема о переносе пары в другую плоскость, параллельную плоскости действия этой пары
- 6.6 Момент пары как вектор
- 6.7 Условие эквивалентности двух пар
- 6.8 Сложение пар, лежащих в разных плоскостях. Условие равновесия пар
- 6.9 Приведение произвольной пространственной системы сил к одной силе и к одной паре
- 6.10 Изменение главного вектора-момента при перемене центра приведения
- 6.11 Инварианты произвольной пространственной системы сил
- 6.12 Приведение произвольной пространственной системы сил к динамическому винту
- 6.13 Случай приведения системы сил, не лежащих в одной плоскости, к равнодействующей. Теорема Вариньона о моменте равнодействующей
- 6.14 Случай приведения системы сил, не лежащих в одной плоскости, к паре
- 6.15 Условия равновесия произвольной пространственной системы сил. Случай пространственной системы параллельных сил
- 6.16 Равновесие твердого тела с одной и с двумя закрепленными точками. Указания к решению задач
- Глава 7. Центр тяжести
- 7.1 Приведение системы параллельных сил к равнодействующей. Центр параллельных сил
- 7.2 Центр тяжести
- 7.3 Способы определения координат центров тяжести тел
- 7.4 Центр тяжести некоторых линий, площадей и объемов
- 7.5 Графическое определение положения центра тяжести плоских фигур