4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
Если линии действия сил данной системы расположены в одной плоскости произвольно, не пересекаются в одной точке и не параллельны между собой (но некоторые из них могут пересекаться в одной точке и могут быть параллельны между собой), то такая система сил называется произвольной плоской системой сил.
Пусть на твердое тело действует произвольная плоская система сил , , …,,приложенных соответственно в точках , , …,этого тела (рисунок 56, а). Возьмем в плоскости действие сил этой системы произвольную точку О, которую назовем центром приведения, и, пользуясь доказанной в § 17 теоремой, перенесем все заданные силы параллельно самим себе в точку О. При этом получим, что: 1) сила , приложенная в точке , эквивалентна силе , приложенной в точке О, и так называемой присоединенной паре с моментом , 2) сила , приложенная в точке , эквивалентна силе , приложенной в точке О, и присоединенной паре с моментом и т. д.
Таким образом, в результате приведения имеем систему сил:
, , …,, (1)
приложенных к произвольно выбранному центру приведения О (рисунок 56, б), и систему лежащих в одной плоскости присоединенных пар
, , …,,(2)
моменты которых соответственно будут равны
, , …,. (3)
Приведенные к точке О силы , , …, можно сложить по правилу силового многоугольника (геометрически) и, следовательно, заменить одной, эквивалентной им, силой , приложенной к той же точке О и равной их геометрической сумме , или, согласно равенствам (1),
. (4)
Все присоединенные пары (2) можно сложить по правилу сложения пар, лежащих в одной плоскости, и, следовательно, заменить их одной парой, расположенной в той же плоскости. Момент этой равнодействующей пары , или, согласно равенствам (3),
. (5)
Величина , равная геометрической сумме всех сил произвольной плоской системы сил (4), называется главным вектором этой системы.
Величина , равная алгебраической сумме моментов всех сил произвольной плоской системы сил относительно центра приведения О (5), называется главным моментом этой системы относительно центра приведения О.
В результате мы доказали следующую теорему: произвольную плоскую систему сил, действующую на твердое тело, в общем случае можно заменить одной силой, равной главному вектору системы и приложенной в произвольно выбранном центре приведения О, и одной парой с моментом, равным главному моменту системы относительно центра приведения О (рисунок 56, в).
Из этой теоремы видно, что две произвольные плоские системы сил для которых главные векторы и главные моменты одинаковы, эквивалентны. Таким образом, для задания произвольной плоской системы сил, действующей на твердое тело, достаточно задать ее главный вектор и главный момент относительно данного центра приведения О.
Модуль и направление главного вектора произвольной плоской системы сил можно найти или геометрически — построением силового многоугольника, или аналитически — по формулам для равнодействующей системы сходящихся сил (§ 2.3 и 2.4, 2.6):
; (6)
; . (7)
Модуль и направление главного вектора не зависят от выбора центра приведения О, так как все силы переносятся в центр приведения О параллельно самим себе, и, следовательно, силовой многоугольник будет при перемене места центра приведения одним и тем же. Чтобы подчеркнуть это свойство главного вектора, говорят, что главный вектор произвольной плоской системы сил инвариантен по отношению к центру приведения (=invar).
Величина и знак главного момента произвольной плоскости системы сил определяется по формуле (5). При изменении положения центра приведения величина и знак главного момента произвольной плоской системы сил изменяется в следствии изменения моментов сил этой системы относительно центра приведения. Следовательно в общем случае главный момент не инвариантен по отношению к центру приведения. Поэтому, когда говорят о главном моменте произвольной плоской системы сил, то всегда указывают, относительно какого центра приведения он вычислен.
Заметим, что принятие равнодействующей и главного вектора – это различные понятия и смешивать их нельзя. Главный вектор не является равнодействующей данной системы сил, так как он заменяет эту силу не один, а вместе с парой, момент которой равен главному моменту той же системы сил относительно выбранного центра приведения. Различие этих понятий заключается также и в том, что главный вектор может являться свободным вектором (т. е. его начало может быть выбрано где угодно), в то время как равнодействующая является скользящим вектором (т. е. имеет определенную линию действия). Кроме того, если главный вектор существует, то при этом равнодействующая может и не существовать.
Сходство понятий равнодействующей и главного вектора заключается в том, что если равнодействующая существует, то она геометрически равна главному вектору.
Yandex.RTB R-A-252273-3- Раздел I. Статика
- Глава 1. Основные понятия и аксиомы статики
- Введение: предмет, метод, место среди естественных наук и границы применимости теоретической механики
- 1.2 Сила, система сил, эквивалентная система сил и уравновешенная система сил
- 1.3 Аксиомы статики и некоторые следствия из них
- 1.4 Исследование связей и установление направления их реакций
- Глава 2. Приведение пространственной и плоской систем сходящихся сил к равнодействующей
- 2.1 Геометрический метод определения равнодействующей
- Пространственной и плоской систем сходящихся сил
- 2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
- 2.3 Разложение силы на сходящиеся составляющие
- 2.4 Проекции силы на ось и на плоскость
- 2.5 Определение силы по ее проекциям на координатные оси
- 2.6 Аналитический метод определения равнодействующей пространственной и плоской систем сходящихся сил
- 2.7 Условия равновесия пространственной и плоской систем сходящихся сил в аналитической форме. Указания к решению задач
- 2.8. Момент силы относительно точки. Теорема Вариньона о моменте равнодействующей
- Глава 3. Система параллельных сил и теория пар, как угодно расположенных в одной плоскости
- 3.1 Приведение систем двух параллельных сил, направленных
- В одну сторону, к равнодействующей
- 3.2 Приведение системы двух неравных по модулю параллельных сил, направленных в противоположные стороны, к равнодействующей
- 3.3 Пара сил. Момент пары сил
- 3.4 Эквивалентность пар
- 3.5 Сложение пар, расположенных в одной плоскости. Условие равновесия пар
- Глава 4. Произвольная плоская система сил
- 4.1 Теорема о параллельном переносе силы. (Метод Пуансо)
- 4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
- 4.3 Приведение произвольной плоской системы сил к равнодействующей
- 4.4 Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил. Условие равновесия рычага
- 4.5 Приведение произвольной плоской системы сил к одной паре
- 4.6 Условия равновесия произвольной плоской системы сил
- 4.7 Условия равновесия плоской системы параллельных сил
- 4.8 Указания к решению задач
- 4.9 Равновесие сочлененной системы тел
- Глава 5. Трение скольжения и качения
- 5.1 Трение скольжения
- 5.2 Трение качения
- 5.3 Понятие о ферме
- 5.4 Способ вырезания узлов
- 5.5. Способ разрезов фермы
- Глава 6. Произвольная пространственная система сил и теория пар, как угодно расположенных в пространстве
- 6.1 Момент силы относительно точки как вектор
- 6.2 Момент силы относительно оси
- 6.3. Зависимость между моментом силы относительно оси и моментом силы относительно точки, лежащей на этой оси
- 6.4 Аналитическое выражение моментов силы относительно координатных осей
- 6.5 Теорема о переносе пары в другую плоскость, параллельную плоскости действия этой пары
- 6.6 Момент пары как вектор
- 6.7 Условие эквивалентности двух пар
- 6.8 Сложение пар, лежащих в разных плоскостях. Условие равновесия пар
- 6.9 Приведение произвольной пространственной системы сил к одной силе и к одной паре
- 6.10 Изменение главного вектора-момента при перемене центра приведения
- 6.11 Инварианты произвольной пространственной системы сил
- 6.12 Приведение произвольной пространственной системы сил к динамическому винту
- 6.13 Случай приведения системы сил, не лежащих в одной плоскости, к равнодействующей. Теорема Вариньона о моменте равнодействующей
- 6.14 Случай приведения системы сил, не лежащих в одной плоскости, к паре
- 6.15 Условия равновесия произвольной пространственной системы сил. Случай пространственной системы параллельных сил
- 6.16 Равновесие твердого тела с одной и с двумя закрепленными точками. Указания к решению задач
- Глава 7. Центр тяжести
- 7.1 Приведение системы параллельных сил к равнодействующей. Центр параллельных сил
- 7.2 Центр тяжести
- 7.3 Способы определения координат центров тяжести тел
- 7.4 Центр тяжести некоторых линий, площадей и объемов
- 7.5 Графическое определение положения центра тяжести плоских фигур