2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
Пусть на свободное тело действует пространственная (или плоская) система сходящихся сил , ,…, (рисунок 27, а).
Сложив по правилу силового многоугольника из этих сил,мы приведем данную систему сходящихся сил к системе двух сил и , эквивалентной данной системе , ,…,. Но из аксиомы I известно, что две силы и ,приложенные к свободному абсолютно твердому телу, находятся в равновесии в том и только в том случае, если эти силы имеют равные модули и направлены по одной прямой в прямо противоположные стороны (), т. е. если их равнодействующая равна нулю. Таким образом,необходимым и достаточным условием равновесия пространственной (и, следовательно, плоской) системы сходящихся сил является равенство нулю равнодействующей этой системы сил, т. е.
, или
. (1)
Это векторное равенство называютвекторным условием равновесия пространственной (и, следовательно, плоской) системы сходящихся сил. Геометрически это условие выражается требованием, чтобы силовой многоугольник, построенный для этой системы сил, замыкался сам по себе. Заметим, что в замкнутом силовом многоугольнике конец вектора последней силы совпадает с началом вектора первой силы , а стрелки векторов всех сил указывают одну и ту же сторону обхода периметра силового многоугольника (рисунок 27, б).
Таким образом, мы приходим к следующему геометрическому (или графическому) условию равновесия: для равновесия пространственной, а также плоской системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный на векторах слагаемых сил этой системы, был замкнут.
- Раздел I. Статика
- Глава 1. Основные понятия и аксиомы статики
- Введение: предмет, метод, место среди естественных наук и границы применимости теоретической механики
- 1.2 Сила, система сил, эквивалентная система сил и уравновешенная система сил
- 1.3 Аксиомы статики и некоторые следствия из них
- 1.4 Исследование связей и установление направления их реакций
- Глава 2. Приведение пространственной и плоской систем сходящихся сил к равнодействующей
- 2.1 Геометрический метод определения равнодействующей
- Пространственной и плоской систем сходящихся сил
- 2.2 Условие равновесия пространственной и плоской систем сходящихся сил в геометрической форме
- 2.3 Разложение силы на сходящиеся составляющие
- 2.4 Проекции силы на ось и на плоскость
- 2.5 Определение силы по ее проекциям на координатные оси
- 2.6 Аналитический метод определения равнодействующей пространственной и плоской систем сходящихся сил
- 2.7 Условия равновесия пространственной и плоской систем сходящихся сил в аналитической форме. Указания к решению задач
- 2.8. Момент силы относительно точки. Теорема Вариньона о моменте равнодействующей
- Глава 3. Система параллельных сил и теория пар, как угодно расположенных в одной плоскости
- 3.1 Приведение систем двух параллельных сил, направленных
- В одну сторону, к равнодействующей
- 3.2 Приведение системы двух неравных по модулю параллельных сил, направленных в противоположные стороны, к равнодействующей
- 3.3 Пара сил. Момент пары сил
- 3.4 Эквивалентность пар
- 3.5 Сложение пар, расположенных в одной плоскости. Условие равновесия пар
- Глава 4. Произвольная плоская система сил
- 4.1 Теорема о параллельном переносе силы. (Метод Пуансо)
- 4.2. Приведение произвольной плоской системы сил к одной силе и к одной паре
- 4.3 Приведение произвольной плоской системы сил к равнодействующей
- 4.4 Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил. Условие равновесия рычага
- 4.5 Приведение произвольной плоской системы сил к одной паре
- 4.6 Условия равновесия произвольной плоской системы сил
- 4.7 Условия равновесия плоской системы параллельных сил
- 4.8 Указания к решению задач
- 4.9 Равновесие сочлененной системы тел
- Глава 5. Трение скольжения и качения
- 5.1 Трение скольжения
- 5.2 Трение качения
- 5.3 Понятие о ферме
- 5.4 Способ вырезания узлов
- 5.5. Способ разрезов фермы
- Глава 6. Произвольная пространственная система сил и теория пар, как угодно расположенных в пространстве
- 6.1 Момент силы относительно точки как вектор
- 6.2 Момент силы относительно оси
- 6.3. Зависимость между моментом силы относительно оси и моментом силы относительно точки, лежащей на этой оси
- 6.4 Аналитическое выражение моментов силы относительно координатных осей
- 6.5 Теорема о переносе пары в другую плоскость, параллельную плоскости действия этой пары
- 6.6 Момент пары как вектор
- 6.7 Условие эквивалентности двух пар
- 6.8 Сложение пар, лежащих в разных плоскостях. Условие равновесия пар
- 6.9 Приведение произвольной пространственной системы сил к одной силе и к одной паре
- 6.10 Изменение главного вектора-момента при перемене центра приведения
- 6.11 Инварианты произвольной пространственной системы сил
- 6.12 Приведение произвольной пространственной системы сил к динамическому винту
- 6.13 Случай приведения системы сил, не лежащих в одной плоскости, к равнодействующей. Теорема Вариньона о моменте равнодействующей
- 6.14 Случай приведения системы сил, не лежащих в одной плоскости, к паре
- 6.15 Условия равновесия произвольной пространственной системы сил. Случай пространственной системы параллельных сил
- 6.16 Равновесие твердого тела с одной и с двумя закрепленными точками. Указания к решению задач
- Глава 7. Центр тяжести
- 7.1 Приведение системы параллельных сил к равнодействующей. Центр параллельных сил
- 7.2 Центр тяжести
- 7.3 Способы определения координат центров тяжести тел
- 7.4 Центр тяжести некоторых линий, площадей и объемов
- 7.5 Графическое определение положения центра тяжести плоских фигур